精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系 xOy 中,已知椭圆 C:的离心率为,且过点 (),点 P 在第四象限, A 为左顶点, B 为上顶点, PA 交 y 轴于点 C,PB 交 x 轴于点 D.

(1) 求椭圆 C 的标准方程;

(2) 求 △PCD 面积的最大值.

【答案】(1); (2) .

【解析】

(1)由条件可得从而可解得椭圆方程

(2)Pmn),m>0,n<0,PAPB,可得C(0,),D),可设,可得,1,从而可得最值.

(1)由已知得

点()代入1可得

代入点()解得b2=1,a=2

∴椭圆C的标准方程:

(2)可得A(﹣2,0),B(0,1).设Pmn),m>0,n<0,且.

PAPB

可得C(0,),D).

.

可设.

.

,.

.

时,.取得最大值,最大值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正四面体中,分别是的中点,下面四个结论中不成立的是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于的方程有一个实数解,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:

(2)讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时, 恒成立,求的范围;

(2)若处的切线为,求的值.并证明当)时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先阅读下列不等式的证法,再解决后面的问题:

已知,求证:.

证明:构造函数

.

因为对一切,恒有

所以,从而得.

1)若,请写出上述结论的推广式;

2)参考上述证法,对你推广的结论加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是正方形,顶点在底面的射影是底面的中心,且各顶点都在同一球面上,若该四棱锥的侧棱长为,体积为4,且四棱锥的高为整数,则此球的半径等于( )(参考公式:

A. 2B. C. 4D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,,其中为自然对数的底数.

(1)求函数的单调区间和极值;

(2)是否存在,对任意的,任意的,都有?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全国文明城市,简称文明城市,是指在全面建设小康社会中市民整体素质和城市文明程度较高的城市.全国文明城市称号是反映中国大陆城市整体文明水平的最高荣誉称号.为普及相关知识,争创全国文明城市,某市组织了文明城市知识竞赛,现随机抽取了甲、乙两个单位各5名职工的成绩(单位:分)如下表:

(1)根据上表中的数据,分别求出甲、乙两个单位5名职工的成绩的平均数和方差,并比较哪个单位的职工对文明城市知识掌握得更好;

(2)用简单随机抽样法从乙单位5名职工中抽取2人,求抽取的2名职工的成绩差的绝对值不小于4的概率.

查看答案和解析>>

同步练习册答案