精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)ln xaxb.

(1)若函数g(x)f(x)为减函数,求实数a的取值范围;

(2)f(x)0恒成立,证明:a1b.

【答案】(1) ;(2)证明见解析.

【解析】试题分析:

(1)求出函数的导数,根据,分参数,求解的范围即可;

(2)求出函数的导数,令,通过讨论的范围,令,根据函数的单调性得到,从而证出结论即可.

试题解析:

(1) g(x)=f(x)+=ln x+ax++b,x>0.

g(x)求导可得g′(x)=+a-,x>0.

要使g(x)(0,+∞)为减函数,则有g′(x)≤0(0,+∞)上恒成立,即a≤

所以a≤-故实数a的取值范围是.

(2)证明 f′(x)=+a=(x>0),

y=ax2+x+1,

a≥0时,f′(x)>0,函数f(x)(0,+∞)上单调递增,不满足f(x)≤0恒成立;

a<0时,Δ=1-4a>0,ax2+x+1=0,得x=>0x=<0,

x0,函数f(x)(0,x0)上单调递增;在(x0,+∞)上单调递减.

f(x)≤0恒成立,所以f(x0)≤0,即ln x0+ax0+b≤0.

由上式可得b≤-ax0-ln x0ax+x0+1=0,得a=-

所以a+b≤-ax0-ln x0=-ln x0+1.

t=,t>0,h(t)=ln t+t-t2+1,

h′(t)=

0<t<1时,h′(t)>0,函数h(t)(0,1)上单调递增,

t≥1时,h′(t)≤0,函数h(t)(1,+∞)上单调递减,h(t)≤h(1)=1.

a+b≤1,即a≤1-b.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某人为研究中学生的性别与每周课外阅读量这两个变量的关系随机抽查了100名中学生得到频率分布直方图(如图所示)其中样本数据的分组区间为:[0,2](2,4](4,6](6,8](8,10](10,12]

()假设同一组中的每个数据可用该组区间的中点值代替试估计样本中的100名学生周课外阅读时间的平均数.

()在样本数据中20位女生的每周课外阅读时间超过4小时15位男生的每周课外阅读时间没有超过4小时.请画出每周课外阅读时间与性别列联表并判断能否在犯错误的概率不超过0.05的前提下认为“该校学生的每周课外阅读时间与性别有关”.

P(K2k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域为D,如果x∈D,y∈D,使得f(x)=-f(y)成立,则称函数f(x)为“Ω函数”.给出下列四个函数:①y=sin x;②y=2x;③y=;④f(x)=ln x.则其中“Ω函数”共有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等差数列,a104a3a43a17.

(1)求通项公式an

(2)bnan2an2,求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正项等差数列{an}满足a1=4,且a2a4+2,2a7-8成等比数列,{an}的前n项和为Sn.

(1)求数列{an}的通项公式;

(2)令,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了减少雾霾,还城市一片蓝天,某市政府于12月4日到12月31日在主城区实行车辆限号出行政策,鼓励民众不开车低碳出行,某甲乙两个单位各有200名员工,为了了解员工低碳出行的情况,统计了12月5日到12月14日共10天的低碳出行的人数,画出茎叶图如下:

(1)若甲单位数据的平均数是122,求

(2)现从如图的数据中任取4天的数据(甲、乙两单位中各取2天),记其中甲、乙两单位员工低碳出行人数不低于130人的天数为 ,令,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a∈R).

(Ⅰ)求f(x)的单调区间与极值;

(Ⅱ)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有两个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在直角坐标系直线的参数方程为 .以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(Ⅰ)写出的普通方程和的直角坐标方程;

(Ⅱ)设直线与曲线交于A,B两点,当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个空间几何体的三视图如图所示,则这个几何体的表面积为(  )

A. 26+4 B. 27+4 C. 34+4 D. 17+2

查看答案和解析>>

同步练习册答案