精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xoy中,已知直线l:8x+6y+1=0,圆C1:x2+y2+8x-2y+13=0,圆C2:x2+y2+8tx-8y+16t+12=0.
(1)当t=-1时,试判断圆C1与圆C2的位置关系,并说明理由;
(2)若圆C1与圆C2关于直线l对称,求t的值;
(3)在(2)的条件下,若P(a,b)为平面上的点,是否存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1与圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,若存在,求点P的坐标,若不存在,请说明理由.

解:(1)t=-1时,圆C1的圆心C1(-4,1),半径r1=2;圆C2的圆心C2(4,4),半径r2=2
∴圆心距|C1C2|=>r1+r2=8
∴两圆相离
(2)圆C2的圆心C2(-4t,4),半径r2=
∵圆C1与圆C2关于直线l对称,又直线l的斜率
得t=0;,
(3)假设存在P(a,b)满足条件:不妨设l1的方程为y-b=k(x-a)(k≠0)
则l2的方程为y-b=-
因为圆C1与圆C2的半径相等,又直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,
所以圆C1的圆心到直线l1距离,和圆C2的圆心到直线l2的距离相等,
=
整理得|(a+4)k-b+1|=|(b-4)k+a|
即(a+4)k-b+1=(b-4)k+a或(a+4)k-b+1=(4-b)k-a
即(a-b+8)k-a-b+1=0或(a+b)k+a-b+1=0
因为k取值无穷多个
所以
解得
∴这样的点P可能是P1(-),P2(-
∴所求点P的坐标为(-)和(-).
分析:(1)求得两圆的圆心距,与半径半径,即可求得结论;
(2)确定圆C2的圆心与半径,两圆圆C1与圆C2关于直线l对称,直线l的斜率,可求t的值;
(3)利用圆C1与圆C2的半径相等,又直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,可得圆C1的圆心到直线l1距离,和圆C2的圆心到直线l2的距离相等,由此可得结论.
点评:本题考查圆与圆的位置关系,考查圆的对称性,考查存在性问题的探求,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x-2y=0,则它的离心率为(  )
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程为
x=2t-1 
y=4-2t .
(参数t∈R),以直角坐标原点为极点,x轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆C的极坐标方程为ρ=4cosθ,则圆心C到直线l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程) 在平面直角坐标系xOy中,圆C的参数方程为
x=2cosθ
y=2sinθ+2
 (参数θ∈[0,2π)),若以原点为极点,射线ox为极轴建立极坐标系,则圆C的圆心的极坐标为
 
,圆C的极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东)在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(Ⅰ)若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步练习册答案