精英家教网 > 高中数学 > 题目详情
9.(1)求函数$f(x)=x+\sqrt{1-2x}$的值域;
(2)已知$f(x)+2f(\frac{1}{x})=3x-2$,求f(x)的解析式.

分析 (1)由题意设t=$\sqrt{1-2x}$,求出t的范围和x的表达式,代入f(x)化简后,根据一元二次函数的性质和t的范围,求出函数f(x)的值域;
(2)令x取$\frac{1}{x}$代入原方程化简,与原方程联立后求出f(x)的解析式.

解答 解:(1)设t=$\sqrt{1-2x}$,则t≥0,x=$\frac{1-{t}^{2}}{2}$,
代入f(x)得,y=$\frac{1-{t}^{2}}{2}$+t=$-\frac{1}{2}(t-1)^{2}+1$,
因为t≥0,所以函数y的最大值是1,
即函数f(x)的值域是[1,+∞);
(2)由题意得,$f(x)+2f(\frac{1}{x})=3x-2$,①
令x取$\frac{1}{x}$代入得,$f(\frac{1}{x})+2f(x)=\frac{3}{x}-2$,②
由①②解得f(x)=$\frac{2}{x}-x-\frac{2}{3}$.

点评 本题考查换元法求函数的值域,列方程法求函数的解析式,以及一元二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,在空间几何体A-BCDE中,底面BCDE是梯形,且CD∥BE,CD=2BE=4,∠CDE=60°,△ADE是边长为2的等边三角形,F为AC的中点.
(Ⅰ)求证:BF∥平面ADE;
(Ⅱ)若AC=4,求证:平面ADE⊥平面BCDE;
(Ⅲ)若AC=4,求几何体C-BDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若圆C1:x2+y2=1与圆C2:(x-3)2+(y-4)2=25-m外切,则m=(  )
A.9B.19C.21D.-11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点为F1(-5,0),F2(5,0),P为双曲线C的右支上一点,且满足|PF1|-|PF2|=2$\sqrt{5}$,则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1B.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{20}$=1D.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{25}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在直角坐标系中,以点(1,2)为圆心,1为半径的圆必与y轴相切,与x轴相离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为研究大气污染与人的呼吸系统疾病是否有关,对重污染地区和轻污染地区作跟踪调查,得出如下数据:
患呼吸系统疾病未患呼吸系统疾病总计
重污染地区1031 3971 500
轻污染地区131 4871 500
总计1162 8843 000
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$能否在犯错误的概率不超过0.001的前提下认为大气污染与人的呼吸系统疾病有关?
参考数据:
P(K2≥k00.0100.0050.001
    k06.6357.87910828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算
(1)2log510-log54
(2)${[{{8^{\frac{2}{3}}}+{{({\frac{1}{25}})}^{-\frac{1}{2}}}+{{343}^{\frac{1}{3}}}}]^{\frac{1}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=f(x+3)是偶函数,则函数y=f(x)图象的对称轴为x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若集合A={x|ax2+ax+1=0}中只有一个元素,则满足条件的实数a构成的集合为{4}.

查看答案和解析>>

同步练习册答案