精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lg[(a2-1)x2+(a+1)x+1].设命题p:“f(x)的定义域为R”;命题q:“f(x)的值域为R”
(1)若命题p为真,求实数a的取值范围;
(2)若命题q为真,求实数a的取值范围;
(3)?p是q的什么条件?请说明理由.
分析:(1)命题p可转化为恒成立问题,根据类二次函数的性质,可得到a的取值范围;
(2)命题q可转化为真数部分的值域包含(0,+∞),据些构造关于a的不等式组,解可得a的取值范围;
(3)由(1)求出?p,并比较两个命题对应的参数a的范围之间的包含关系,进而根据“谁小谁充分,谁大谁必要”可得答案.
解答:解:(1)若命题p为真,即f(x)的定义域是R,
则(a2-1)x2+(a+1)x+1>0恒成立,…(2分)
则a=-1或
a2-1>0
△=(a+1)2-4(a2-1)<0.
…(3分)
解得a≤-1或a>
5
3

∴实数a的取值范围为(-∞,-1]∪(
5
3
,+∞).…(5分)
(2)若命题q为真,即f(x)的值域是R,
设u=(a2-1)x2+(a+1)x+1的值域为A
则A?(0,+∞),…(6分)
等价于a=1或
a2-1>0
△=(a+1)2-4(a2-1)≥0.
…(8分)
解得1≤a≤
5
3

∴实数a的取值范围为[1,
5
3
]
.…(10分)
(3)由(Ⅰ)(Ⅱ)知,
?p:a∈(-1 , 
5
3
]
;q:a∈[1 , 
5
3
]

(-1,
5
3
]?[1,
5
3
]

∴?p是q的必要而不充分的条件.…(13分)
点评:本题是对数函数性质,恒成立问题,充要条件的综合应用,(1)中的转化思想,以及类二次函数的图象及性质中的分类讨论思想,都是高中重点培养的数学思想,(2)的转化比较难理解,可借助二次函数的图象和性质进行分析.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案