精英家教网 > 高中数学 > 题目详情

某射击游戏规定:每位选手最多射击3次;射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i(i=1,2,3)次射击时击中目标得4-i分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.
(Ⅰ)求甲恰好射击两次的概率;
(Ⅱ)设该选手甲停止射击时的得分总和为ξ,求随机变量ξ的分布列及数学期望.

解:(Ⅰ)设选手甲第i次击中目标的事件为Ai(i=1,2,3),

依题可知:Ai与Aj(i,j=1,2,3,i≠j)相互独立
所求为:…(5分)
(Ⅱ)ξ可能取的值为0,3,5,6.          …(6分)
ξ的分布列为:
ξ0356
P0.20.160.1280.512
…(10分)(表中的每一个概率值各占1分)
∴Eξ=0×0.2+3×0.16+5×0.128+6×0.512=4.192.…(12分)
分析:(Ⅰ)甲恰好射击两次说明第一次射中,第二次未射中,设选手甲第i次击中目标的事件为Ai(i=1,2,3),则,而Ai与Aj(i,j=1,2,3,i≠j)相互独立,从而求出所求;
(II)ξ可能取的值为0,3,5,6,然后求出相应的概率,得到ξ的分布列,最后根据离散型随机变量的期望公式解之即可.
点评:本题主要考查了相互独立事件的概率乘法公式,以及离散型随机变量的期望和分布列,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•天津模拟)某射击游戏规定:每位选手最多射击3次;射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i(i=1,2,3)次射击时击中目标得4-i分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.
(Ⅰ)求甲恰好射击两次的概率;
(Ⅱ)设该选手甲停止射击时的得分总和为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:天津模拟 题型:解答题

某射击游戏规定:每位选手最多射击3次;射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i(i=1,2,3)次射击时击中目标得4-i分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.
(Ⅰ)求甲恰好射击两次的概率;
(Ⅱ)设该选手甲停止射击时的得分总和为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:天津模拟题 题型:解答题

某射击游戏规定:每位选手最多射击3次;射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i(i=l,2,3)次射击时击中目标得4-i分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.
(Ⅰ)求甲恰好射击两次的概率;
(Ⅱ)设该选手甲停止射击时的得分总和为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:2010年天津市十二区县重点中学高三联考数学试卷1(理科)(解析版) 题型:解答题

某射击游戏规定:每位选手最多射击3次;射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i(i=1,2,3)次射击时击中目标得4-i分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.
(Ⅰ)求甲恰好射击两次的概率;
(Ⅱ)设该选手甲停止射击时的得分总和为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案