精英家教网 > 高中数学 > 题目详情
10、如图,将平面直角坐标系的格点(横、纵坐标均为整数的点)按如下规则表上数字标签:
原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)标5,点(-1,1)处标6,点(0,1)处标7,…,以此类推,则标20092的格点的坐标为(  )
分析:根据已知中平面直角坐标系的格点(横、纵坐标均为整数的点)按如下规则?∪表上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)标5,点(-1,1)处标6,点(0,1)处标7,我们归纳出其中奇数平方坐标的位置出现的规律,即可得到答案.
解答:解:观察已知中点(1,0)处标1,即12
点(2,1)处标9,即32
点(3,2)处标25,即52

由此推断
点(n+1,n)处标(2n+1)2
当2n+1=2009时,n=1004
故标签20092的格点的坐标为(1005,1004)
故选A.
点评:本题考查的知识点是归纳推理,其中根据已知平面直角坐标系的格点(横、纵坐标均为整数的点)的规则,找出表上数字标签所示的规律,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•泉州模拟)将边长为1的正三角形ABC按如图所示的方式放置,其中顶点A与坐标原点重合.记边AB所在直线的倾斜角为θ,已知θ∈[0,
π
3
]

(Ⅰ)试用θ表示
BC
的坐标(要求将结果化简为形如(cosα,sinα)的形式);
(Ⅱ)定义:对于直角坐标平面内的任意两点P(x1,y1)、Q(x2,y2),称|x1-x2|+|y1-y2|为P、Q两点间的“taxi距离”,并用符号|PQ|表示.试求|BC|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

将边长为1的正三角形ABC按如图所示的方式放置,其中顶点A与坐标原点重合.记边AB所在直线的倾斜角为θ,已知数学公式
(Ⅰ)试用θ表示数学公式的坐标(要求将结果化简为形如(cosα,sinα)的形式);
(Ⅱ)定义:对于直角坐标平面内的任意两点P(x1,y1)、Q(x2,y2),称|x1-x2|+|y1-y2|为P、Q两点间的“taxi距离”,并用符号|PQ|表示.试求|BC|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为1的正三角形按如图所示的方式放置,其中顶点与坐标原点重合.记边所在直线的倾斜角为,已知

       (Ⅰ)试用表示的坐标(要求将结果化简为形如的形式);

       (Ⅱ)定义:对于直角坐标平面内的任意两点,称两点间的“taxi距离” ,并用符号表示.试求的最大值.

 


查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为1的正三角形按如图所示的方式放置,其中顶点与坐标原点重合.记边所在直线的倾斜角为,已知

       (Ⅰ)试用表示的坐标(要求将结果化简为形如的形式);

       (Ⅱ)定义:对于直角坐标平面内的任意两点,称两点间的“taxi距离” ,并用符号表示.试求的最大值.

 


查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-4:坐标系与参数方程) (本小题满分10分)

在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.

(Ⅰ)求圆C的直角坐标方程;

(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.

23(本小题满分10分)

 已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.

(Ⅰ)证明:CM⊥SN;

(Ⅱ)求SN与平面CMN所成角的大小.

24.(本小题满分10分)

将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为.

 (Ⅰ)若该硬币均匀,试求

 (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较的大小.

查看答案和解析>>

同步练习册答案