精英家教网 > 高中数学 > 题目详情
4.已知{an}是等差数列,且a2+a5+a8+a11=48,则a6+a7=24.

分析 由已知结合等差数列的性质得答案.

解答 解:在等差数列{an}中,由a2+a5+a8+a11=48,得
(a2+a11)+(a5+a8)=48,
即2(a6+a7)=48,∴a6+a7=24.
故答案为:24.

点评 本题考查等差数列的通项公式,考查了等差数列的性质,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.(1)已知关于方程x2+2(m-1)x-2m=0的两根都在[-2,2)内.则实数m的取值范围是什么?
(2)关于x的方程2kx2-2x-3k-2=0的两实根一个小于1,另一个大于1,则实数k的取值范围是什么?
(3)方程x2-(a+4)x-2a2+5a+3=0的两根都在区间[-1,3]上,求实数m的取值范围.
(4)方程x2-2ax+4=0的两根均大于1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别为F1、F2,点$A(\frac{{\sqrt{15}}}{2},\frac{1}{2})$是以F1F2为直径的圆与双曲线的一交点.
(1)求双曲线的方程;
(2)若P为该双曲线上任意一点,直线PF1、PF2分别交双曲线于M、N两点,$\overrightarrow{P{F_1}}={λ_1}\overrightarrow{{F_1}M}({λ_1}≠-1)$,$\overrightarrow{P{F_2}}={λ_2}\overrightarrow{{F_2}N}({λ_2}≠-1)$,请判断λ12是否为定值,若是,求出该定值;若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\sqrt{lo{g}_{\frac{1}{2}}(x-3)}$的定义域是(3,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={x|-1<x<4},B={-1,1,2,4},则A∩B=(  )
A.{1,2}B.{-1,4}C.{-1,2}D.{2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=sin2ωx在区间[-$\frac{π}{6}$,$\frac{π}{6}$]上是减函数.则实数ω的取值范围是[-$\frac{3}{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求证:
(1)1+tan2α=$\frac{1}{co{s}^{2}α}$;
(2)tan2αsin2α=tan2α-sin2α;
(3)sin4α+cos4α=1-2sin2αcos2α;
(4)$\frac{1-2sinxcosx}{co{s}^{2}x-si{n}^{2}x}$=$\frac{1-tanx}{1+tanx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{7}}}{4}$,短轴的一个端点到右焦点的距离为4.
(1)求椭圆的标准方程;
(2)若“椭圆的长半轴长为a,短半轴长为b时,则椭圆的面积是πab.”
请针对(1)中求得的椭圆,求解下列问题:
①若m,n∈R,且|m|≤4,|n|≤3,求点P(m,n)落在椭圆内的概率;
②若m,n∈Z,且|m|≤4,|n|≤3,求点P(m,n)落在椭圆内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.幂函数y=(m2-2m-2)x-4m-2在(0,+∞)上为增函数,则实数m=-1.

查看答案和解析>>

同步练习册答案