精英家教网 > 高中数学 > 题目详情
17.若函数y=3sin(2x+φ)(-π<φ<0)的图象向左平移$\frac{π}{6}$后得到的图象关于y轴对称,|φ|=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 根据三角函数的平移变换规律化简,图象关于y轴对称,可得函数是偶函数,可求φ的值.

解答 解:函数y=3sin(2x+φ)(-π<φ<0)的图象向左平移$\frac{π}{6}$后得到:y=3sin[2(x+$\frac{π}{6}$)+φ]=3sin(2x+$\frac{π}{3}$+φ),
∵平移后图象关于y轴对称,
∴$\frac{π}{3}$+φ=$-\frac{π}{2}+kπ$(k∈Z),
∵-π<φ<0,
当k=0时,可得φ=$-\frac{5π}{6}$,
故选:D.

点评 本题主要考查了三角函数的图象的平移变换规律,以及偶函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.将函数f(x)=cos2ωx的图象向右平移$\frac{3π}{4ω}$个单位,得到函数y=g(x)的图象,若y=g(x)在$[-\frac{π}{4},\frac{π}{6}]$上为减函数,则正实数ω的最大值为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某化工厂拟建一个下部为圆柱,上部为半球的容器(如图,圆柱高为h,半径为r,不计厚度,单位:米),按计划容积为72π立方米,且h≥2r,假设其建造费用仅与表面积有关(圆柱底部不计),已知圆柱部分每平方米的费用为2千元,半球部分每平方米4千元,设该容器的建造费用为y千元.
(Ⅰ)求y关于r的函数关系,并求其定义域;
(Ⅱ)求建造费用最小时的r.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图四棱锥E-ABCD中,四边形ABCD为平行四边形,△BCE为等边三角形,△ABE是以∠A为直角的等腰直角三角形,且AC=BC.
(Ⅰ)证明:平面ABE⊥平面BCE;
(Ⅱ)求二面角A-DE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设全集U={0,1,2,3,4},集合A=(1,2,3),B={2,3,4},则A∪∁UB=(  )
A.{1}B.{0,1}C.{0,1,2,3}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.甲、乙两人射击比赛,两人平的概率是$\frac{1}{2}$,甲获胜的概率是$\frac{1}{3}$,则甲不输的概率为(  )
A.$\frac{2}{5}$B.$\frac{5}{6}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=|x|B.y=x-2C.y=ex-e-xD.y=-x+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.抛物线x=ay2(a≠0)的焦点坐标是$({\frac{1}{4a},0})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足a1=10,an-10≤an+1≤an+10(n∈N*).
(1)若{an}是等差数列,Sn=a1+a2+…+an,且Sn-10≤Sn+1≤Sn+10(n∈N*),求公差d的取值集合;
(2)若a1,a2,…,ak成的比数列,公比q是大于1的整数,且a1+a2+…+ak>2017,求正整数k的最小值;
(3)若a1,a2,…,ak成等差数列,且a1+a2+…+ak=100,求正整数k的最小值及k取最小值时公差d的值.

查看答案和解析>>

同步练习册答案