精英家教网 > 高中数学 > 题目详情

【题目】关于函数,下列判断正确的是(

A.的极大值点

B.函数有且只有1个零点

C.存在正实数,使得恒成立

D.对任意两个正实数,且,若,则

【答案】BD

【解析】

利用导数为工具,对选项逐一分析,由此确定正确选项.

1的定义域为,所以上递减,在上递增,所以的极小值点.A选项错误.

2)构造函数,所以上递减..所以有且只有一个零点.B选项正确.

3)构造函数.,由于开口向下,时,,即,故不存在正实数,使得恒成立,C选项错误.

(4)由(1)知,上递减,在上递增, 的极小值点.由于任意两个正实数,且,故..,即,即,解得,则.所以.要证,即证,即证,由于,所以,故即证.构造函数(先取),.所以上为增函数,所以,所以上为增函数,所以.故当时,.即证得①成立,故D选项正确.

故选:BD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)求的极值;

2)若时,的单调性相同,求的取值范围;

3)当时,函数有最小值,记的最小值为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为4,点P(2,3)在椭圆上.

(1)求椭圆C的方程;

(2)过点P引圆的两条切线PAPB,切线PAPB与椭圆C的另一个交点分别为AB试问直线AB的斜率是否为定值?若是,求出其定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,沿河有两城镇,它们相距20千米,以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送),依据经验公式,建厂的费用为(万元),表示污水流量,铺设管道的费用(包括管道费)(万元),表示输送污水管道的长度(千米).已知城镇和城镇的污水流量分别为两城镇连接污水处理厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排入河中;请解答下列问题:

1)若在城镇和城镇单独建厂,共需多少总费用?

2)考虑联合建厂可能节约总投资,设城镇到拟建厂的距离为千米,求联合建厂的总费用的函数关系式,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)

(1)应收集多少位女生样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为该校学生的每周平均体育运动时间与性别有关.

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线经过椭圆: 的左顶点和上顶点,椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点。

(1)求椭圆方程;

(2)求线段的长度的最小值;

(3)当线段的长度最小时,在椭圆上有两点,使得,的面积都为,求直线y轴上的截距。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,若直线是函数的图象的切线,求的最小值;

(2)设函数,若上存在极值,求的取值范围,并判断极值的正负.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间有50名工人,要完成150件产品的生产任务,每件产品由3A 型零件和1B 型零件配套组成.每个工人每小时能加工5A 型零件或者3B 型零件,现在把这些工人分成两组同时工作(分组后人数不再进行调整),每组加工同一中型号的零件.设加工A 型零件的工人人数为x名(x∈N*

1)设完成A 型零件加工所需时间为小时,写出的解析式;

2)为了在最短时间内完成全部生产任务,x应取何值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点PQ分别为A1B1BC的中点.

(1)求异面直线BPAC1所成角的余弦值;

(2)求直线CC1与平面AQC1所成角的正弦值.

查看答案和解析>>

同步练习册答案