【题目】关于函数,下列判断正确的是( )
A.是的极大值点
B.函数有且只有1个零点
C.存在正实数,使得恒成立
D.对任意两个正实数,,且,若,则
【答案】BD
【解析】
利用导数为工具,对选项逐一分析,由此确定正确选项.
(1)的定义域为,,所以在上递减,在上递增,所以是的极小值点.故A选项错误.
(2)构造函数,,所以在上递减.而,,.所以有且只有一个零点.故B选项正确.
(3)构造函数.,由于,开口向下,和时,,即,时,故不存在正实数,使得恒成立,C选项错误.
(4)由(1)知,在上递减,在上递增, 是的极小值点.由于任意两个正实数,,且,,故.令,.由得,即,即,解得,则.所以.要证,即证,即证,由于,所以,故即证①.构造函数(先取),;,;.所以在上为增函数,所以,所以在上为增函数,所以.故当时,.即证得①成立,故D选项正确.
故选:BD.
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距为4,点P(2,3)在椭圆上.
(1)求椭圆C的方程;
(2)过点P引圆的两条切线PA,PB,切线PA,PB与椭圆C的另一个交点分别为A,B,试问直线AB的斜率是否为定值?若是,求出其定值,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,沿河有、两城镇,它们相距20千米,以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送),依据经验公式,建厂的费用为(万元),表示污水流量,铺设管道的费用(包括管道费)(万元),表示输送污水管道的长度(千米).已知城镇和城镇的污水流量分别为,,、两城镇连接污水处理厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排入河中;请解答下列问题:
(1)若在城镇和城镇单独建厂,共需多少总费用?
(2)考虑联合建厂可能节约总投资,设城镇到拟建厂的距离为千米,求联合建厂的总费用与的函数关系式,并求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(1)应收集多少位女生样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线经过椭圆: 的左顶点和上顶点,椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点。
(1)求椭圆方程;
(2)求线段的长度的最小值;
(3)当线段的长度最小时,在椭圆上有两点,使得,的面积都为,求直线在y轴上的截距。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间有50名工人,要完成150件产品的生产任务,每件产品由3个A 型零件和1个B 型零件配套组成.每个工人每小时能加工5个A 型零件或者3个B 型零件,现在把这些工人分成两组同时工作(分组后人数不再进行调整),每组加工同一中型号的零件.设加工A 型零件的工人人数为x名(x∈N*)
(1)设完成A 型零件加工所需时间为小时,写出的解析式;
(2)为了在最短时间内完成全部生产任务,x应取何值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.
(1)求异面直线BP与AC1所成角的余弦值;
(2)求直线CC1与平面AQC1所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com