精英家教网 > 高中数学 > 题目详情
设A={x,y},B={1,xy},若A=B,求x,y分别为
 
考点:集合的相等
专题:集合
分析:直接由两集合相等得到
x=1
xy=y
y=1
xy=x
,则x,y的值可求.
解答: 解:∵A={x,y},B={1,xy},
若A=B,则
x=1
xy=y
y=1
xy=x

即x=1,y≠1或x≠1,y=1.
故答案为:x=1,y≠1或x≠1,y=1.
点评:本题考查了集合相等的条件,考查了集合中元素的特性,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,∠A=2∠B,∠C为钝角,且∠A、B、C所对的边为a,b,c的长度均为整数,则△ABC的周长最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,顶点A(1,7),B(3,3),C(7,3),过B作BD⊥AC于D点,求D点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象(如图所示)过点(0,2)、(1.5,2)和点(2,0),且函数图象关于点(2,0)对称;直线x=1和x=3及y=0是它的渐近线.现要求根据给出的函数图象研究函数g(x)=
1
f(x)
的相关性质与图象.
(1)写出函数y=g(x)的定义域、值域及单调递增区间;
(2)作函数y=g(x)的大致图象(要充分反映由图象及条件给出的信息);
(3)试写出y=f(x)的一个解析式,并简述选择这个式子的理由(按给出理由的完整性及表达式的合理、简洁程度分层给分).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinx•cosx+2mcos2x.
(1)当m=
3
时,求函数f(x)的周期,在区间[0,
π
2
]上的值域;
(2)若m<0,求函数f(x)在区间[0,
π
2
]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA是圆O的切线,A为切点,PA=4,PB=2,则直径AC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,以BC为直径的半圆分别交AB,AC于点E,F,且AC=2AE,那么
AF
AB
=
 
;∠A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
4
sin(
π
4
-x)+
6
4
cos(
π
4
-x).
(1)求f(x)的最小正周期;
(2)若cosθ=
4
5
,θ∈(
2
,2π)
,求f(2θ+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某电商在“双十一”期间用电子支付系统进行商品买卖,全部商品共有n类(n∈N*),分别编号为1,2,…,n,买家共有m名(m∈N*,m<n),分别编号为1,2,…,m.若aij=
1,第i名买家购买第j类商品
0,第i名买家不购买第j类商品
1≤i≤m,1≤j≤n,则同时购买第1类和第2类商品的人数是(  )
A、a11+a12+…+a1m+a21+a22+…+a2m
B、a11+a21+…+am1+a12+a22+…+am2
C、a11a12+a21a22+…+am1am2
D、a11a21+a12a22+…+a1ma2m

查看答案和解析>>

同步练习册答案