精英家教网 > 高中数学 > 题目详情
椭圆的离心率为,其左焦点到点的距离为
(1) 求椭圆的标准方程;
(2) 若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
(1);(2)证明详见解析,.

试题分析:本题主要考查椭圆的标准方程及其几何性质、直线与椭圆相交问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用椭圆的离心率和左焦点到点P的距离列出方程组,解出基本量a,b,c,从而得到椭圆的标准方程;第二问,用直线与椭圆联立,消参得到关于x的方程,利用韦达定理得到,由于AB为直径的圆过椭圆右顶点 A2(2,0) ,所以,利用向量的数量积的运算公式,将前面的式子都代入,得到 或 m = -2k,经验证都符合题意,则分别求出定点坐标,再验证,最终得到结论.
试题解析:(1)由题: ①
左焦点 (-c,0) 到点 P(2,1) 的距离为:②               2分
由①②可解得c =" 1" , a =" 2" , b 2 = a 2-c 2 = 3.                               3分   
∴所求椭圆 C 的方程为.               4分
(2)设 A(x1,y1)、B(x2,y2),将 y =" kx" + m代入椭圆方程得
(4k 2 + 3) x 2 + 8kmx + 4m 2-12 = 0.
,           6分
且y1 = kx1 + m,y2 = kx2 + m.
∵AB为直径的圆过椭圆右顶点 A2(2,0) ,所以.              7分
所以 (x1-2,y1)·(x2-2,y2) = (x1-2) (x2-2) + y1y2 = (x1-2) (x2-2) + (kx1 + m) (kx2 + m)
= (k 2 + 1) x1x2 + (km-2) (x1 + x2) + m 2 + 4
= (k 2 + 1)·-(km-2)·+ m 2 + 4 =" 0" .                        10分
整理得 7m 2 + 16km + 4k 2 = 0.∴ 或 m = -2k 都满足 △ > 0.         12分
若 m = -2k 时,直线 l 为 y = kx-2k =" k" (x-2) ,恒过定点 A2(2,0),不合题意舍去;   13分
时,直线 l 为, 恒过定点  .          14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆C:的离心率,右焦点到直线1的距离,O为坐标原点.
(1)求椭圆C的方程;
(2)过点O作两条互相垂直的射线,与椭圆C分别交于A、B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.
(1)求椭圆C的方程;
(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

A为y轴上异于原点O的定点,过动点P作x轴的垂线交x轴于点B,动点P满足|
PA
+
PO
|=2|
PB
|
,则点P的轨迹为(  )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

点M(x,y)到定点F(5,0)的距离和它到定直线l:x=
9
5
的距离的比是常数
5
3
,求点M的轨迹.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知l1与l2是互相垂直的异面直线,l1在平面α内,l2α,平面α内的动点P到l1与l2的距离相等,则点P的轨迹是(  )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的一个焦点为F(0,1),离心率,则椭圆的标准方程为(      ).
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线E上任意一点P到两个定点F1(-,0)和F2(,0)的距离之和为4.
(1)求曲线E的方程;
(2)设过点(0,-2)的直线l与曲线E交于C、D两点,且·=0(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率分别为椭圆的长轴和短轴的端点,中点,为坐标原点,且.
(1)求椭圆的方程;
(2)过点的直线交椭圆于两点,求面积最大时,直线的方程.

查看答案和解析>>

同步练习册答案