精英家教网 > 高中数学 > 题目详情
12.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若A=60°,c=6,a=6,则此三角形有(  )
A.两解B.一解C.无解D.无穷多解

分析 由三角形的知识可判三角形为正三角形,可得一解.

解答 解:由等边对等角可得C=A=60°,
由三角形的内角和可得B=60°,
∴此三角形为正三角形,唯一解.
故选:B.

点评 本题考查三角形解的个数的判断,涉及等边对等角和三角形的内角和,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为(1,0),离心率为$\frac{1}{2}$.
(1)求椭圆C的标准方程;
(2)过点P(0,3)的直线m与C交于A、B两点,若A是PB的中点,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在空间直角坐标系中,点P(1,2,-3)关于坐标平面xOy的对称点为(  )
A.(-1,-2,3)B.(-1,-2,-3)C.(-1,2,-3)D.(1,2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知sin($\frac{π}{6}$-α)+cos($\frac{π}{6}$-α)=$\frac{\sqrt{5}}{5}$,则cos($\frac{π}{6}$+2α)=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=xlnx,g(x)=x3+ax2-x+2
(1)求函数f(x)的单调区间;
(2)求函数f(x)在[t,t+2](t>0)上的最小值;
(3)对一切的x,2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知-9,a1,a2,-1成等差数列,1,b1,b2,27成等比数列,则$\frac{b_2}{b_1}•({a_2}-{a_1})$=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.i2016=(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某学校随机抽取部分学生调查其上学路上所需时间(单位:分钟),并将所得数据制成频率分布直方图(如图),若上学路上所需时间的范围为[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方图中a的值;
(2))如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,若招收学生1200人,请估计所招学生中有多少人可以申请住宿;
(3)求该校学生上学路上所需的平均时间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=ln$\frac{3x}{2}$-$\frac{2}{x}$的零点一定位于区间(  )
A.(0,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

同步练习册答案