精英家教网 > 高中数学 > 题目详情
3.给出下列结论:①命题“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”;
②要得到函数y=sin($\frac{x}{2}$-$\frac{π}{4}$)的图象,只需将y=sin$\frac{x}{2}$的图象向右平移$\frac{π}{4}$个单位;
③数列{an}满足“an+1=3an”是“数列{an}为等比数列”的充分不必要条件;
④命题“若x=y,则sinx=siny”的逆否命题为真命题.其中正确的是(  )
A.①②④B.①③C.①④D.①③④

分析 写出原命题的否定,可判断①;根据函数图象的平移变换法则,可判断②;根据充要条件的定义及等比数列的定义,可判断③;根据互为逆否的两个命题真假性相同,可判断④

解答 解:命题“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”,故①正确;
要得到函数y=sin($\frac{x}{2}$-$\frac{π}{4}$)的图象,只需将y=sin$\frac{x}{2}$的图象向右平移$\frac{\frac{π}{4}}{\frac{1}{2}}$=$\frac{π}{2}$个单位,故②错误;
数列{an}满足an=0时,满足“an+1=3an”,但数列不是等比数列,
当“数列{an}为等比数列”时,公比不一定为3,故“an+1=3an”不一定成立,
故“an+1=3an”是“数列{an}为等比数列”的即不充分不必要条件,故③错误
命题“若x=y,则sinx=siny”为真命题,故其逆否命题为真命题,故④正确.
故正确的命题是:①④,
故选:C

点评 本题以命题的真假判断与应用为载体,考查和全称命题的否定,函数图象的平移变换,等比数列的定义,四种命题等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的前n项和为Sn,S13=91,等比数列{bn}中首项b1=3,公比q=2,且a3是-42和b5的等差中项.
(I)求数列{an}的通项公式;
(Ⅱ)设cn=2${\;}^{{a}_{n}}$+(-1)nan,求数列{cn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个正四棱锥的侧棱长与底面边长相等,体积为$\frac{4}{3}$$\sqrt{2}$,则它的表面积为4+4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆x2+y2-4x+2y-3=0和圆外一点M(4,-8).
(1)求圆心坐标和半径长;
(2)过点M作直线与圆交于A,B两点,若|AB|=4,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若关于实数x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是(  )
A.(-∞,8]B.(-∞,8)C.(8,+∞)D.[8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对于函数f(x)=$\left\{\begin{array}{l}{sinπx,x∈[0,2]}\\{\frac{1}{2}f(x-2),x∈(2,+∞)}\end{array}\right.$,有下列5个结论:
①f($\frac{1}{2}$)+f($\frac{5}{2}$)+…f($\frac{1}{2}$+2k)=2-$\frac{1}{{2}^{k}}$,其中k∈N;
②函数f(x)的单调递增区间为[$\frac{3}{2}$+2k,$\frac{5}{2}$+2k](k∈N)
③函数y=f(x)-ln(x-2)仅有一个零点;
④?x1,x2∈[1,+∞)都有|f(x1)-f(x2)|≤$\frac{3}{2}$恒成立;
⑤对任意x>0,不等式f(x)≤$\frac{m}{x}$恒成立,则实数m的取值范围为($\frac{5}{4}$,+∞)
其中正确的结论的序号为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求分段函数f(x)=$\left\{\begin{array}{l}{2x+5,x<2}\\{3,x=2}\\{5x-1,x>2}\end{array}\right.$,在点x2=2处的极限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$\left\{\begin{array}{l}{2x-1,}&{x>0}\\{{2}^{x},}&{x≤0}\end{array}\right.$
(1)求函数在点x=0处的左右极限;
(2)当x→0时,函数极限是否存在?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.以模型y=cekx去拟合一组数据时,为了求出回归方程,设z=lny,其变换后得到线性回归方程z=0.3x+4,则c=(  )
A.0.3B.e0.3C.4D.e4

查看答案和解析>>

同步练习册答案