精英家教网 > 高中数学 > 题目详情
4.函数f(x)=(ax-a-x)($\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$)的图象关于(  )
A.y轴对称B.直线y=-x对称C.坐标原点对称D.直线y=x对称

分析 分析函数的奇偶性,进而可得函数图象关于y轴对称.

解答 解:∵函数f(x)=(ax-a-x)($\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$),
∴函数f(-x)=(a-x-ax)($\frac{1}{{2}^{-x}-1}$+$\frac{1}{2}$)=[-(ax-a-x)]($\frac{{2}^{x}}{{1-2}^{x}}$+$\frac{1}{2}$)=[-(ax-a-x)][-($\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$)]=(ax-a-x)($\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$)=f(x),
∴函数f(x)=(ax-a-x)($\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$)为偶函数,
故函数f(x)=(ax-a-x)($\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$)的图象关于y轴对称,
故选:A

点评 本题考查的知识点是函数的奇偶性,函数的图象,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±$\sqrt{3}$x,左、右焦点分别为F1((-c,0),F2(c,0).且双曲线被直线x=-c所截得的弦长为6.
(1)求双曲线C的方程;
(2)若过F2且倾斜角为135°的直线l交C于A,B两点,求△F1AB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.当x∈(1,+∞)时,对数函数f(x)=(a-1)logax(  )
A.单调递增B.单调递减
C.部分递增部分递减D.既不递增也不递减

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{8}$=1,过点M(1,1)的直线与椭圆相交于A、B两点,若M为弦AB的中点,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知:角θ的终边上有一点P(-3,4),若角θ终边上又有一点Q(sin2θ,cos(2θ+$\frac{π}{3}$)),试确定Q点所在的象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2-(a+2)x+lnx.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在x=1时取得极值,求函数f(x)的单调区间;
(3)若对?x1,x2∈(0,+∞),且x1≠x2,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}>-2$恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过定点P(1,0)作直线l,使l与曲线y2=4x相交于A,B两点,且|AB|=5,则这样的直线l有2条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=lg(ax2-4a+1),0<a<$\frac{1}{4}$,则关于x的不等式(x-1)f(x)<0的解集为(  )
A.(-∞,-2)∪(1,2)B.(-2,-1)∪(2,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在一张纸上画一个圆,圆心为O,半径为R,并在圆O外设置一个定点F,折叠纸片使圆周上某一点M与F重合,抹平纸片得一折痕AB,连结MO并延长交AB于点P,当点M在圆O上运动时,直线AB与P点轨迹的公共点的个数为1.

查看答案和解析>>

同步练习册答案