精英家教网 > 高中数学 > 题目详情
18.等差数列{an}中(公差不为零),a1,a2,a4恰好成等比数,则$\frac{{a}_{4}}{{a}_{1}}$的值是 (  )
A.1B.2C.3D.4

分析 设等差数列{an}的公差为d≠0,由于a1,a2,a4恰好成等比数,可得${a}_{2}^{2}$=a1a4,即$({a}_{1}+d)^{2}$=a1(a1+3d),解出a1=d.即可得出.

解答 解:设等差数列{an}的公差为d≠0,
∵a1,a2,a4恰好成等比数,
∴${a}_{2}^{2}$=a1a4
∴$({a}_{1}+d)^{2}$=a1(a1+3d),
化为a1=d.
则$\frac{{a}_{4}}{{a}_{1}}$=$\frac{4{a}_{1}}{{a}_{1}}$=4.
故选:D.

点评 本题考查了等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在△ABC中,已知acosB=bcosA=ccosC,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若不等式组$\left\{\begin{array}{l}x≥0\\ x+3y≥4\\ 3x+y≤4\end{array}$所表示的平面区域被直线y=kx+$\frac{4}{3}$分为面积比为1:2的两部分,则k的一个值为(  )
A.$\frac{7}{3}$B.$\frac{4}{3}$C.1D.$\frac{3}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知an=logn+1(n+2)(n∈N*),定义:使a1•a2…ak为整数的正整数k称为“企盼数”,则[1,2005]内所有企盼数之和为(  )
A.2026B.2025C.2024D.2023

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.等差数列-3,1,5,…的前几项和是150?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=x2-1的单调递增区间是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在等差数列{an}中,若a1>0,d≠0,且S9=S17,n为何值时,Sn最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若3f(x)+2f(-x)=2x,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)是定义在实数集R上的函数,满足条件y=f(x-1)是奇函数,且当x>-1时,f(x)=2x-1,则f(-2)、f(-$\frac{4}{3}$)、f(-$\frac{1}{3}$)的大小关系是(  )
A.f(-2)<f(-$\frac{4}{3}$)<f(-$\frac{1}{3}$)B.f(-$\frac{1}{3}$)<f(-2)<f(-$\frac{4}{3}$)C.f(-$\frac{4}{3}$)<f(-2)<f(-$\frac{1}{3}$)D.f(-$\frac{4}{3}$)<f(-$\frac{1}{3}$)<f(-2)

查看答案和解析>>

同步练习册答案