精英家教网 > 高中数学 > 题目详情

【题目】下列结论不正确的是(填序号).
①各个面都是三角形的几何体是三棱锥;
②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥;
③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥;
④圆锥的顶点与底面圆周上的任意一点的连线都是母线.

【答案】①②③
【解析】①错误,如图所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.

②错误,如图,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体不是圆锥.

③错误,若六棱锥的所有棱长都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.
④正确,符合圆锥曲线母线的定义,故错误的是①②③.
所以答案是:①②③.
【考点精析】关于本题考查的棱锥的结构特征和旋转体(圆柱、圆锥、圆台),需要了解侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方;常见的旋转体有:圆柱、圆锥、圆台、球才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设P为双曲线 右支上一点,M,N分别是圆(x+4)2+y2=4和(x﹣4)2+y2=1上的点,设|PM|﹣|PN|的最大值和最小值分别为m,n,则|m﹣n|=(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx﹣ x2+bx存在极小值,且对于b的所有可能取值,f(x)的极小值恒大于0,则a的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为弘扬民族古典文化,市电视台举行古诗词知识竞赛,某轮比赛由节目主持人随机从题库中抽取题目让选手抢答,回答正确将给该选手记正10分,否则记负10分.根据以往统计,某参赛选手能答对每一个问题的概率均为 ;现记“该选手在回答完n个问题后的总得分为Sn”.
(1)求S6=20且Si≥0(i=1,2,3)的概率;
(2)记X=|S5|,求X的分布列,并计算数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在 上的函数满足 ,当 时, .
(1)求证: 为奇函数;
(2)求证: 上的增函数;
(3)解关于 的不等式: (其中 为常数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+ (a∈R)是定义域为R的奇函数,其中e是自然对数的底数.
(1)求实数a的值;
(2)若存在x∈(0,+∞),使不等式f(x2+x)+f(2﹣tx)<0成立,求实数t的取值范围;
(3)若函数y=e2x+ ﹣2mf(x)在(m,+∞)上不存在最值,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知g(x)是各项系数均为整数的多项式,f(x)=2x2﹣x+1,且满足f(g(x))=2x4+4x3+13x2+11x+16,则g(x)的各项系数之和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体 中, 的中点为 的中点为 ,则异面直线 所成的角是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,动物园要建造一面靠墙的两间相同的矩形熊猫居室,如果可供建造围墙的材料总长是

(1)用宽 (单位 )表示所建造的每间熊猫居室的面积 (单位 );
(2)怎么设计才能使所建造的每间熊猫居室面积最大?并求出每间熊猫居室的最大面积?

查看答案和解析>>

同步练习册答案