精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=2+log3x,x∈[1,9],则函数y=[f(x)]2+f(x2)的最大值为(
A.6
B.22
C.﹣3
D.13

【答案】D
【解析】解:y=[f(x)]2+f(x2)=(log3x)2+6log3x+6,
∵f(x)=2+log3x,x∈[1,9],
,解得:1≤x≤3,
∴y=[f(x)]2+f(x2)=(log3x)2+6log3x+6定义域是{x|1≤x≤3}.
令log3x=t,1≤x≤3,
∴0≤t≤1,
∴y=t2+6t+6,0≤t≤1,
y=t2+6t+6,在[0,1]上是增函数,
当t=1时,即x=3时,
y取最大值,最大值为13,
故选:D.
根据f(x)的定义域为[1,9],求出y=[f(x)]2+f(x2)的定义域为[1,3],然后利用二次函数的最值再求函数y=[f(x)]2+f(x2))=(log3x)2+6log3x+6,令log3x=t,1≤x≤3,0≤t≤1,由二次函数的性质即可求得函数y=[f(x)]2+f(x2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C:+=1(a>b>0)的离心率为 , 其中左焦点F(﹣2,0).
(1)求椭圆C的方程;
(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段的中点M在圆x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了分析某篮球运动员在比赛中发挥的稳定程度,统计了运动员在8场比赛中的得分,用茎叶图表示如图,则该组数据的标准差为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,A=60°,a=3.
(1)若b=2,求cosB;
(2)求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:点P在直径AB=1的半圆上移动(点P不与A,B重合),过P作圆的切线PT且PT=1,∠PAB=α,

(1)当α为何值时,四边形ABTP面积最大?
(2)求|PA|+|PB|+|PC|的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线y2=4x,过点P(2,0)作斜率分别为k1 , k2的两条直线,与抛物线相交于点A、B和C、D,且M、N分别是AB、CD的中点

(1)若k1+k2=0, ,求线段MN的长;
(2)若k1k2=﹣1,求△PMN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的顶点与焦点分别是椭圆 =1(a>b>0)的焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)当曲线在点处的切线的斜率大于时,求函数的单调区间;

(2)若 恒成立,求的取值范围.(提示:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且时, ,则函数为自然对数的底数)的零点个数是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步练习册答案