精英家教网 > 高中数学 > 题目详情

【题目】定义个正数的“均倒数”.已知正项数列的前项的“均倒数”为.

1)求数列的通项公式;

2)设数列的前项和为,若对一切恒成立,试求实数的取值范围;

3)令,问:是否存在正整数使得对一切恒成立,如存在,求出值,否则说明理由.

【答案】1;(2;(3)存在,且.

【解析】

1)设数列的前项和为,由题意可得,利用可求得数列的通项公式;

2)求得,利用裂项法可求得,并得出,由题意可得,解此不等式即可得出实数的取值范围;

3)解法一:利用定义判断数列的单调性,可求得数列的最大项,进而可求得的值;

解法二:解不等式可求得正整数的值.

1)设数列的前项和为

由于数列的前项的“均倒数”为,所以

时,

时,.

也满足,因此,对任意的

2

对一切恒成立,

所以,解之得

的取值范围是

3)解法一:

由于

,此时,数列单调递增;当,此时,数列单调递减.

所以,当时,取得最大值,

即存在正整数使得对一切恒成立;

解法二:

假设存在正整数使得,则为数列中的最大项,

,解得

,即存在正整数使得对一切恒成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校开展我身边的榜样评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求详见选票.这3名候选人的得票数(不考虑是否有效)分别为总票数的88%75%46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为百分之________

我身边的榜样评选选票

候选人

符号

注:

1.同意画“○”,不同意画“×”

2每张选票“○”的个数不超过2时才为有效票

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居环境改善、饮食习惯、社会心理健康、公共卫生设施等多个方面开展,特别是要坚决杜绝食用野生动物的陋习,提倡文明健康、绿色环保的生活方式”的要求.某小组通过问卷调查,随机收集了该区居民六类日常生活习惯的有关数据.六类习惯是:(1)卫生习惯状况类;(2)垃圾处理状况类;(3)体育锻炼状况类;(4)心理健康状况类;(5)膳食合理状况类;(6)作息规律状况类.经过数据整理,得到下表:

卫生习惯状况类

垃圾处理状况类

体育锻炼状况类

心理健康状况类

膳食合理状况类

作息规律状况类

有效答卷份数

380

550

330

410

400

430

习惯良好频率

0.6

0.9

0.8

0.7

0.65

0.6

假设每份调查问卷只调查上述六类状况之一,各类调查是否达到良好标准相互独立.

1)从小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是膳食合理状况类中习惯良好者的概率;

2)从该区任选一位居民,试估计他在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯的概率;

3)利用上述六类习惯调查的排序,用“”表示任选一位第k类受访者是习惯良好者,“”表示任选一位第k类受访者不是习惯良好者(.写出方差的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是减函数,求实数的取值范围;

(2)若函数上存在两个极值点,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求上的最小值;

2)若直线是函数的切线方程,求实数的值;

3)若,证明:对任意实数恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,侧棱底面 垂直于为棱上的点,.

(1)若为棱的中点,求证://平面

(2)当时,求平面与平面所成的锐二面角的余弦值;

(3)在第(2)问条件下,设点是线段上的动点,与平面所成的角为,求当取最大值时点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:

组别

2

3

5

15

18

12

0

5

10

10

7

13

(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?

(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.

①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;

②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:

红包金额(单位:元)

10

20

概率

现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,底面为菱形, 相交于点,四边形为直角梯形, ,平面底面.

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个长方形木块,三个侧面积分别为81224,现将其削成一个正四面体模型,则该正四面体模型棱长的最大值为(

A.2B.C.4D.

查看答案和解析>>

同步练习册答案