分析 91)要求二次函数的解析式,利用直接设解析式的方法,一定要注意二次项系数不等于零,在解答的过程中使用系数的对应关系,解方程组求的结果;
(2)f(x)=x2-x+1在∈[-2,$\frac{1}{2}$]上递减,在[$\frac{1}{2}$,4]递增,即可求值域.
解答 解:设二次函数的解析式为f(x)=ax2+bx+c (a≠0)
由f(0)=1得c=1,
故f(x)=ax2+bx+1.
因为f(x+1)-f(x)=2x,
所以a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.
即2ax+a+b=2x,即2a=2,a+b=0∴a=1,b=-1
所以f(x)=x2-x+1
(2)f(x)=x2-x+1在∈[-2,$\frac{1}{2}$]上递减,在[$\frac{1}{2}$,4]递增,
∴f(x)min=f($\frac{1}{2}$)=$\frac{3}{4}$,f(x)max=f(4)=13
∴f(x)的值域为[$\frac{3}{4}$,13]
点评 本题考查二次函数的解析式的求法,注意运用待定系数法,考查二次函数的值域的求法,注意运用函数的单调性,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | -$\frac{7π}{4}$ | B. | -$\frac{3π}{4}$ | C. | -$\frac{π}{4}$ | D. | $\frac{5π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若x∈R,则$x+\frac{4}{x}≥4$ | B. | 若x∈R,则${x^2}+2+\frac{1}{{{x^2}+2}}≥2$ | ||
C. | 若x∈R,则${x^2}+1+\frac{1}{{{x^2}+1}}≥2$ | D. | 若a、b为正实数,则$\frac{{\sqrt{a}+\sqrt{b}}}{2}≥\sqrt{ab}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com