精英家教网 > 高中数学 > 题目详情
15.已知二次函数f(x)满足f(x+1)-f(x)=2x(x∈R),且f(0)=1.
(1)求f(x)的解析式;
(2)当x∈[-2,4]时,求f(x)的值域.

分析 91)要求二次函数的解析式,利用直接设解析式的方法,一定要注意二次项系数不等于零,在解答的过程中使用系数的对应关系,解方程组求的结果;
(2)f(x)=x2-x+1在∈[-2,$\frac{1}{2}$]上递减,在[$\frac{1}{2}$,4]递增,即可求值域.

解答 解:设二次函数的解析式为f(x)=ax2+bx+c (a≠0)
由f(0)=1得c=1,
故f(x)=ax2+bx+1.
因为f(x+1)-f(x)=2x,
所以a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.
即2ax+a+b=2x,即2a=2,a+b=0∴a=1,b=-1
所以f(x)=x2-x+1
(2)f(x)=x2-x+1在∈[-2,$\frac{1}{2}$]上递减,在[$\frac{1}{2}$,4]递增,
∴f(x)min=f($\frac{1}{2}$)=$\frac{3}{4}$,f(x)max=f(4)=13
∴f(x)的值域为[$\frac{3}{4}$,13]

点评 本题考查二次函数的解析式的求法,注意运用待定系数法,考查二次函数的值域的求法,注意运用函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知角α(0<α<$\frac{π}{2}$)的终边经过点(cos2β,1+sin3βcosβ-cos3βsinβ),($\frac{π}{2}$<β<π,且β≠$\frac{3π}{4}$),则α-β=(  )
A.-$\frac{7π}{4}$B.-$\frac{3π}{4}$C.-$\frac{π}{4}$D.$\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列不等式中,正确的是(  )
A.若x∈R,则$x+\frac{4}{x}≥4$B.若x∈R,则${x^2}+2+\frac{1}{{{x^2}+2}}≥2$
C.若x∈R,则${x^2}+1+\frac{1}{{{x^2}+1}}≥2$D.若a、b为正实数,则$\frac{{\sqrt{a}+\sqrt{b}}}{2}≥\sqrt{ab}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.数列{an}满足a1=1,$\sqrt{\frac{1}{{{a_n}^2}}+2}$=$\frac{1}{{{a_{n+1}}}}$,数列{an2}的前n项和记为Sn,若有S2n+1-Sn≤$\frac{t}{20}$对任意的n∈N*恒成立,则正整数t的最小值为17.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=2${\;}^{1-{x}^{2}}$的部分图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x-$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$-4,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对于二次函数,f(x)=x2+2x+3
(1)指出图象的开口方向、对称轴方程、顶点坐标
(2)画出它的图象,分析函数的单调区间
(3)若x∈[-3,4],求函数的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,若3sinC=2sinB,点E,F分别是AC,AB的中点,则$\frac{BE}{CF}$的取值范围为$(\frac{1}{4},\frac{7}{8})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一平面截球O得到半径为$\sqrt{5}$cm的圆面,球心到这个平面的距离是2cm,则球的半径为3cm.

查看答案和解析>>

同步练习册答案