精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C:的右焦点为F,点A(一2,2)为椭圆C内一点。若椭圆C上存在一点P,使得|PA|+|PF|=8,则m的取值范围是( ).

A. B. [9,25] C. D. [3,5]

【答案】A

【解析】

设椭圆的左焦点为F'(﹣2,0),由椭圆的定义可得2=|PF|+|PF'|,即|PF'|=2﹣|PF|,可得|PA|﹣|PF'|=8﹣2,运用三点共线取得最值,解不等式可得m的范围,再由点在椭圆内部,可得所求范围.

椭圆C:的右焦点F(2,0),

左焦点为F'(﹣2,0),

由椭圆的定义可得2=|PF|+|PF'|,

即|PF'|=2﹣|PF|,

可得|PA|﹣|PF'|=8﹣2

由||PA|﹣|PF'||≤|AF'|=2,

可得﹣2≤8﹣2≤2,

解得所以,①

又A在椭圆内,

所以,所以8m-16<m(m-4),解得,

取交集得

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,过点的直线的参数方程为:为参数), 以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,直线与曲线分别交于两点.

1)写出曲线的普通方程;

2)若成等比数列,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),圆与圆外切于原点,且两圆圆心的距离,以坐标原点为极点,轴正半轴为极轴建立极坐标系.

(1)求圆和圆的极坐标方程;

(2)过点的直线与圆异于点的交点分别为点,与圆异于点的交点分别为点,且,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于两个定义域相同的函数,若存在实数,使则称函数是由“基函数”生成的.

1)若生成一个偶函数,求的值;

2)若是由生成,其中.的取值范围;

3)利用“基函数”生成一个函数,使得满足:

①是偶函数,②有最小值,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率为,短轴长为2

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)设P为椭圆上顶点,点A是椭圆C上异于顶点的任意一点,直线x轴于点M,点B与点A关于x轴对称,直线x轴于点N.问:在y轴的正半轴上是否存在点Q,使得?若存在,求点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A. B. C的对边分别为a,b,c,己知=b(c-asinC)。

(1)求角A的大小;

(2)若b+c=,求△ABC的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由直线组成的图形中,共有同旁内角______对.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱 的中点.

1证明 平面

2 求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,矩形ABCD中,AD⊥平面ABEAEEBBC2FCE上的点,且BF⊥平面ACE.

(1)求证:AE⊥平面BCE

(2)求证:AE∥平面BFD

(3)求三棱锥CBGF的体积.

查看答案和解析>>

同步练习册答案