点P在曲线上移动,设在点P处的切线的倾斜角为为,则的取值范围是
【解析】
试题分析:根据导数的几何意义可知切线的斜率即为该点处的导数,再根据导数的取值范围求出斜率的范围,最后再根据斜率与倾斜角之间的关系k=tanα,求出α的范围即可。解:∵tanα=3x2-1,∴tanα∈[-1,+∞).=当tanα∈[0,+∞)时,α∈[0,);当tanα∈[-1,0)时,α∈[,,π).∴α∈[0,)∪[,π).故答案。
考点:导数研究曲线上某点切线的方程
点评:此题考查了利用导数研究曲线上某点切线的方程,直线倾斜角与斜率的关系,以及正切函数的图象与性质.要求学生掌握导函数在某点的函数值即为过这点切线方程的斜率,且直线的斜率为倾斜角的正切值,掌握正切函数的图象与性质.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
如图所示,△ABC为直角三角形,∠C=90°,若 =(0,-4),M在轴上,且AM=,点C在轴上移动.
(Ⅰ)求点B的轨迹E的方程;
(Ⅱ)过点F(0,)的直线与曲线E交于P、Q两点,设N(0,)(<0),与的夹角为,若≤等恒成立,求的取值范围;
(Ⅲ)设以点N为圆心,以半径的圆与曲线E在第一象限的交点为H,若圆在点H处的切线与曲线E在点H处的切线互相垂直,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图所示,△ABC为直角三角形,∠C=90°,若 =(0,-4),M在轴上,且AM=,点C在轴上移动.
(Ⅰ)求点B的轨迹E的方程;
(Ⅱ)过点F(0,)的直线与曲线E交于P、Q两点,设N(0,)(<0),与的夹角为,若≤恒成立,求的取值范围;
(Ⅲ)设以点N为圆心,以半径的圆与曲线E在第一象限的交点为H,若圆在点H处的切线与曲线E在点H处的切线互相垂直,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com