精英家教网 > 高中数学 > 题目详情

【题目】

讨论的单调区间;

时,上的最小值为,求上的最大值.

【答案】)当时,的单调递减区间为

时,的单调递减区间为

单调递增区间为

【解析】

试题第一问对函数求导,结合参数的取值范围,确定出导数在相应的区间上的符号,从而确定出单调区间,第二问结合给定的参数的取值范围,确定出函数在那个点处取得最小值,求得参数的值,再求得函数的最大值.

试题解析:(,其

1)若,即时,恒成立,上单调递减;

2)若,即时,令,得两根

单调递减;当时,单调递增.

综上所述:当时,的单调递减区间为

时,的单调递减区间为

单调递增区间为

的变化情况如下表:














单调递减

极小值

单调递增

极大值

单调递减

时,有,所以上的最大值为

,即

所以上的最小值为

,从而上的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知常数数列的前项和为

(1)求数列的通项公式;

(2)若且数列是单调递增数列,求实数的取值范围;

(3)若数列满足:对于任意给定的正整数,是否存在使 ?若存在,求的值(只要写出一组即可);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1中,AA1⊥面ABC,ABAC,且AA1=AB=AC,则异面直线AB1BC1所成角为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的顶点 边上的中线所在的直线方程为 边上的高所在直线的方程为

)求的顶点的坐标.

若圆经过不同的三点,且斜率为的直线与圆相切于点,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求证:函数f(x)-g(x)必有零点;

(2)设函数G(x)=f(x)-g(x)-1

①若函数G(x)有两相异零点且上是减函数,求实数m的取值范围。

②是否存在整数a,b使得的解集恰好为若存在,求出a,b的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,BAC=90°AB=AC=AA1=2EBC中点.

(Ⅰ)求证:A1B//平面AEC1

()在棱AA1上存在一点M,满足,求平面MEC1与平面ABB1A1所成锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体ABCDE中四边形ABED是直角梯形,∠BAD=90°,DE∥AB,△ACD是的正三角形,CD=AB=DE=1,BC=

(1)求证:△CDE是直角三角形

(2) F是CE的中点,证明:BF⊥平面CDE

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率为

(I)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点.若直线上存在点,使得四边形是平行四边形,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时,.

(1)已画出函数轴左侧的图像,如图所示,请补出完整函数的图像,并根据图像写出函数的增区间;

⑵写出函数的解析式和值域.

查看答案和解析>>

同步练习册答案