【题目】下列函数中,在其定义域内既是奇函数又是减函数的是( )
A.y=﹣x3
B.y=
C.y=x
D.y=
科目:高中数学 来源: 题型:
【题目】某工厂拟造一座平面为长方形,面积为的三级污水处理池.由于地形限制,长、宽都不能超过,处理池的高度一定.如果池的四周墙壁的造价为元,中间两道隔墙的造价为元,池底的造价为元,则水池的长、宽分別为多少米时,污水池的造价最低?最低造价为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=,DE=3,∠BAD=60,G为BC的中点.
(1)求证:FG平面BED;
(2)求证:平面BED⊥平面AED;
(3)求直线EF与平面BED所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求实数k的值;
(2)设g(x)=log4(a2x+a),若f(x)=g(x)有且只有一个实数解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,空间几何体中,四边形是梯形,四边形是矩形,且平面平面, , , 是线段上的动点.
(1)求证: ;
(2)试确定点的位置,使平面,并说明理由;
(3)在(2)的条件下,求空间几何体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=,DE=3,∠BAD=60,G为BC的中点.
(1)求证:FG平面BED;
(2)求证:平面BED⊥平面AED;
(3)求直线EF与平面BED所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, 在和处取得极值,且,曲线在处的切线与直线垂直.
(Ⅰ)求的解析式;
(Ⅱ)证明关于的方程至多只有两个实数根(其中是的导函数, 是自然对数的底数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,过上一点的切线的方程为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点且斜率不为的直线交椭圆于两点,试问轴上是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com