精英家教网 > 高中数学 > 题目详情
11.已知圆C:x2+y2-4x-6y+3=0,直线l:mx+2y-4m-10=0(m∈R).当l被C截得的弦长最短时,m=2.

分析 由题意可得直线l经过定点A(4,5).要使直线l被圆C截得的弦长最短,需CA和直线l垂直,故有KCA•Kl=-1,再利用斜率公式求得m的值.

解答 解:圆C:x2+y2-4x-6y+3=0,即(x-2)2+(y-3)2=10的圆心C(2,3)、半径为$\sqrt{10}$,
直线l:mx+2y-4m-10=0,即 m(x-4)+(2y-10)=0,
由$\left\{\begin{array}{l}{x-4=0}\\{2y-10=0}\end{array}\right.$,求得x=4,y=5,故直线l经过定点A(4,5).
要使直线l被圆C截得的弦长最短,需CA和直线l垂直,
故有KCA•Kl=-1,即$\frac{5-3}{4-2}$•(-$\frac{m}{2}$)=-1,求得m=2,
故答案为2.

点评 本题主要考查直线过定点问题,直线和圆的位置关系,直线的斜率公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.函数f(x)=arcsinx+arctanx的值域是[-$\frac{3π}{4}$,$\frac{3π}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图1.在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2CD,DE⊥AB,沿DE将△AEDD折起到△A1ED的位置,连结A1B,A1C,M,N分别为A1C,BE的中点.如图2.
(I )求证:DE丄A1B
(Ⅱ)求证:MN∥平面A1ED
(Ⅲ)在棱A1B上是否存在一点G.使得EG丄平面A1BC?若存在,求出 $\frac{{A}_{1}G}{GB}$的值:若不存在.说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$f(x)=\frac{x}{e^x},{f_1}(x)=f'(x),{f_2}(x)=[{f_1}(x)]',…,{f_{n+1}}=[{f_n}(x)]',n∈N$,照此规律fn(x)=$\frac{{{{(-1)}^n}(x-n)}}{e^x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.in1320°的值是-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知平行四边形ABCD的边BC,CD的中点分别为K,L,且$\overrightarrow{AK}=\overrightarrow{e_1},\overrightarrow{AL}=\overrightarrow{e_2}$,试用$\overrightarrow{e_1},\overrightarrow{e_2}$表示$\overrightarrow{AB},\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=4sin2x+4$\sqrt{2}$sinxcosx
(Ⅰ)求函数f(x)的最小正周期和递增区间;
(Ⅱ)求函数f(x)的图象的对称中心的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的外接球表面积为29π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=2sin(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示,则φ=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案