精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x+3
-
1
x+2
,那么函数值f(-3)等于(  )
A.0B.1C.2D.3
∵函数f(x)=
x+3
-
1
x+2

∴f(-3)=
-3+3
-
1
-3+2
=1.
故选:B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知g(x)=1-x,f[g(x)]=2-x2
(1)求f(x)的解析式;
(2)h(x)=
f(x)-1
x2
-a,若h(x)在x∈[-3,-1]上的最大值是-
5
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)是定义在R上的偶函数,对任意的x∈R都有f(x+6)=f(x)+2f(3),f(-1)=2,则f(2011)=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x+
p
x
(p>0).
(1)若P=4,判断f(x)在区间(0,2)的单调性,并加以证明;
(2)若f(x)在区间(0,2)上为单调减函数,求实数P的取值范围;
(3)若p=8,方程f(x)=3a-264在x∈(0,2)内有实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f(x)=
(3a-1)x+4a,x<1
-ax(x≥1)
,在(-∞,+∞)上是减函数,则a的取值范围是(  )
A.[
1
8
1
3
B.[0,
1
3
]
C.(0,
1
3
D.(-∞,
1
3
]

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
x2+bx+c,x≤0
bx+2,x>0
,若f(-4)=f(1),f(-1)=3,求b,c的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=
ax+1
x+2
在(-2,+∞)上为增函数,则a的取值范围是(  )
A.0<a<
1
2
B.a<-1或a>
1
2
C.a>
1
2
D.a>-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)满足f(
1
x
)=x+2

(Ⅰ)求f(x)的解析式及其定义域;
(Ⅱ)写出f(x)的单调区间并证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)是R上的奇函数,当x≤0时,f(x)=2x2-x,则f(1)=______.

查看答案和解析>>

同步练习册答案