精英家教网 > 高中数学 > 题目详情
某几何体的三视图如图所示,其底面为菱形,该几何体的体积是
 

考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:三视图复原的几何体是以俯视图为底面的四棱锥,根据三视图的数据,求出几何体的底面积和高,代入体积公式即可.
解答: 解:三视图复原的几何体是以俯视图为底面的四棱锥,
其底面面积S=
1
2
×2×2=2,
高h=2,
故该几何体的体积V=
1
3
Sh
=
4
3

故答案为:
4
3
点评:本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)为R上增函数,且对任意x∈R,都有f[f(x)-3x]=4,则f(2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在R上的偶函数,x≥0时,f(x)=x2-4x+3.
(1)求x<0时函数的解析式;
(2)在给出的直角坐标系中画出y=f(x)的图象,并写出f(x)的单调递增区间;
(3)求函数f(x)在[0,3]的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4),若λ为实数,(
b
a
)⊥
c
,则λ的值为(  )
A、-
3
11
B、-
11
3
C、
1
2
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

某空间几何体的三视图如图所示,则该几何体的体积为(  )
A、1200+72π
B、B、1200+144π
C、1600+72π
D、1600+144π

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)在定义域内的一个区间[a,b](a<b)上函数值的取值范围恰好是[
a
2
b
2
],则称区间[a,b]是函数f(x)的有关减半压缩区间,若函数f(x)=
x-1
+m存在一个减半压缩区间[a,b](b>a≥1),则实数m的取值范围是(  )
A、(0,
1
2
B、(0,
1
2
]
C、(
1
2
,1]
D、(
1
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b>c,且3a+2b+c=0,求
c
a
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x-
π
6
)+cos(x-
π
3
),g(x)=2cos2
x
2

(1)若θ是第一象限角,且f(θ)=
3
3
5
.求g(θ)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各式中,值为0.5是(  )
A、sin15°cos15°
B、
tan22.5°
1-tan222.5°
C、cos2
π
12
sin2
π
12
D、
1
2
+
1
2
cos
π
6

查看答案和解析>>

同步练习册答案