【题目】某校夏令营有3名男同学和3名女同学,其年级情况如下表:
一年级 | 二年级 | 三年级 | |
男同学 | A | B | C |
女同学 | X | Y | Z |
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)
用表中字母列举出所有可能的结果
设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.
【答案】(1)15,(2)
【解析】
试题(1)列举事件,关键是按一定顺序,做到不重不漏.从6名同学中随机选出2人参加知识竞赛的所有可能结果为
{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,其事件包含{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件发生的概率
试题解析:解(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件发生的概率
科目:高中数学 来源: 题型:
【题目】已知圆C过点,且与圆外切于点,过点作圆C的两条切线PM,PN,切点为M,N.
(1)求圆C的标准方程;
(2)试问直线MN是否恒过定点?若过定点,请求出定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】两圆(圆心,半径),与(圆心,半径)不是同心圆,方程相减(消去二次项)得到的直线叫做圆 与圆的根轴;
(1)求证:当与相交于A,B两点时,所在直线为根轴;
(2)对根轴上任意点P,求证:;
(3)设根轴与交于点H,,求证:H分的比;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点务极点,轴正半轴为极轴建立极坐标系,曲线,
(1)求曲线,的直角坐标方程;
(2)曲线和的交点为,,求以为直径的圆与轴的交点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司租赁甲、乙两种设备生产、两类产品,甲种设备每天能生产类产品件和类产品件,乙种设备每天能生产类产品件和类产品件.已知设备甲每天的租赁费为元,设备乙每天的租赁费为元,现该公司至少要生产类产品件,类产品件,求所需租赁费最少为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有、两个题目,该学生答对、两题的概率分别为、,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为,至少答对一个问题即可被聘用,若只答对一问聘为职员,答对两问聘为助理(假设每个环节的每个题目或问题回答正确与否是相互独立的).
(1)求该学生被公司聘用的概率;
(2)设该学生应聘结束后答对的题目或问题的总个数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量与向量的对应关系用表示.
(1) 证明:对于任意向量、及常数m、n,恒有;
(2) 证明:对于任意向量,;
(3) 证明:对于任意向量、,若,则.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com