精英家教网 > 高中数学 > 题目详情
18.已知关于x的不等式2x-1>m(x2-1).
(1)是否存在实数m,使不等式对任意的x∈R恒成立?并说明理由.
(2)若对于m∈[-2,2]不等式恒成立,求实数x的取值范围.

分析 (1)根据二次函数的性质得到关于m的不等式组,解出即可;
(2)设f(m)=(x2-1)m-(2x-1),由m∈[-2,2]时,f(m)<0恒成立,根据二次函数的性质得到f(2)<0且f(-2)<0,解不等式组求出x的范围即可.

解答 解:(1)原不等式等价于mx2-2x+(1-m)<0,
若对于任意x恒成立,
必须$\left\{\begin{array}{l}m<0\\△<0\end{array}\right.$,解得m∈∅,
所以不存在实数m,使不等式恒成立.
(2)设f(m)=(x2-1)m-(2x-1),
当m∈[-2,2]时,f(m)<0恒成立,
必须$\left\{\begin{array}{l}f(2)<0\\ f(-2)<0\end{array}\right.$即$\left\{\begin{array}{l}2{x^2}-2x-1<0\\-2{x^2}-2x+3<0\end{array}\right.$
∴x的范围是$\left\{{x|\frac{{-1+\sqrt{7}}}{2}<x<\frac{{1+\sqrt{3}}}{2}}\right\}$.

点评 本题考查了二次函数的性质,考查函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在(2x+a)5的展开式中,含x2项的系数等于320,则$\int_0^a{({e^x}+2x)dx}$等于(  )
A.e2+3B.e2+4C.e+1D.e+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.化简:
(1)sin($\frac{π}{6}$-2π)cos($\frac{π}{4}$+π)
(2)sin($\frac{π}{4}$+$\frac{5π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.△ABC中,AB=6,AC=8,∠BAC=90°,△ABC所在平面α外一点P到点A、B、C的距离都是13,则P到平面α的距离为(  )
A.7B.9C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知抛物线y2=-x与直线y=k(x+1)相交于A,B两点.
(1)求证:OA⊥OB;
(2)是否存k使△OAB的面积等于1,若存在求k的值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的解析式为(  )
A.y=x2-1B.y=x2+1C.y=(x-1)2D.y=(x+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx+ax.
(1)若曲线f(x)在点(1,f(1))处的切线与直线y=4x+1平行,求a的值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\frac{1}{3}{f}^{'}(e)x+xlnx$(其中,e为自然对数的底数).
(Ⅰ)求f′(e);
(Ⅱ)求函数f(x)的极值;
(Ⅲ)若整数k使得f(x)>k(x-1)恒成立,求整数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x、y满足曲线方程x2+$\frac{1}{{y}^{2}}$=2,则x2+y2的取值范围是(  )
A.[0,+∞)B.[2,+∞)C.[$\frac{1}{2}$,+∞)D.[$\frac{1}{2}$,$\frac{5}{2}$)

查看答案和解析>>

同步练习册答案