【题目】如图,在长方体ABCDA1B1C1D1中,AB=AA1=1,E为BC中点.
(1)求证:C1D⊥D1E;
(2)在棱AA1上是否存在一点M,使得BM∥平面AD1E?若存在,求的值,若不存在,说明理由;
(3)若二面角B1AED1的大小为90°,求AD的长.
【答案】见解析
【解析】解:(1)证明:以D为坐标原点,建立如图所示的空间直角坐标系Dxyz,
设AD=a,则D(0,0,0),A(a,0,0),B(a,1,0),B1(a,1,1),C1(0,1,1),D1(0,0,1),E,∴=(0,-1,-1),=,
∴C1D⊥D1E。
(2)设=h,则M(a,0,h),
∴=(0,-1,h),=,=(-a,0,1),
设平面AD1E的法向量为n=(x,y,z),
∴平面AD1E的一个法向量为n=(2,a,2a),
∵BM∥平面AD1E,
∴⊥n,即·n=2ah-a=0,∴h=。
即在AA1上存在点M,使得BM∥平面AD1E,此时=。
(3)连接AB1,B1E,设平面B1AE的法向量为m=(x′,y′,z′),=,=(0,1,1),
∴平面B1AE的一个法向量为m=(2,a,-a).
∵二面角B1AED1的大小为90°,
∴m⊥n,∴m·n=4+a2-2a2=0,
∵a>0,∴a=2,即AD=2。
科目:高中数学 来源: 题型:
【题目】上周某校高三年级学生参加了数学测试,年部组织任课教师对这次考试进行成绩分析.现从中抽取80名学生的数学成绩(均为整数)的频率分布直方图如图所示.
(Ⅰ)估计这次月考数学成绩的平均分和众数;
(Ⅱ)假设抽出学生的数学成绩在段各不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数字中任意抽取2个数,有放回地抽取3次,记这3次抽取中恰好有两名学生的数学成绩的次数为,求的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长方形ABCD中,AB=1,AD=。现将长方形沿对角线BD折起,使AC=a,得到一个四面体ABCD,如图所示.
(1)试问:在折叠的过程中,异面直线AB与CD,AD与BC能否垂直?若能垂直,求出相应的a值;若不垂直,请说明理由.
(2)当四面体ABCD的体积最大时,求二面角ACDB的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ;
(1)若f(x)的定义域为 (-∞,+∞), 求实数a的范围;
(2)若f(x)的值域为 [0, +∞), 求实数a的范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列是关于函数y=f(x),x∈[a,b]的几个命题:
①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;
②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;
③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;
④用二分法求方程的根时,得到的都是近似值.
那么以上叙述中,正确的个数为 ( )
A. 0 B. 1 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司试销一种成本单价为500元/件的新产品,规定试销时销售单价不低于成本单价,又不高于800元/件.经试销调查,发现销售量(件)与销售单价(元/件)可近似看作一次函数的关系(如图所示).
(1)根据图象,求一次函数的表达式;
(2)设公司获得的毛利润(毛利润=销售总价—成本总价)为元. 试用销售单价表示毛利润并求销售单价定为多少时,该公司获得最大毛利润?最大毛利润是多少?此时的销售量是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com