精英家教网 > 高中数学 > 题目详情

【题目】下列说法正确的是

A. 命题“的否定是:“

B. 命题“若,则”的否命题为“若,则

C. 若命题为真为假为假命题

D. “任意实数大于不是命题

【答案】A

【解析】

A,根据全称命题的否定是特称命题,判断A正确;
B,根据命题“若p,则q”的否命题为“若¬p,则¬q,判断即可;
C,根据复合命题的真假性判断正误即可;
D,根据命题的定义判断即可

对于A,根据全称命题“x>0,lnx≤x-1”的否定是
特称命题:“x0>0,lnx0>x0-1”,判断A正确;
对于B,命题“若x2=1,则x=1”的否命题为
“若x2≠1,则x≠1”,∴B错误;
对于C,命题p∨q为真,p∧q为假时,p、q一真一假,
则¬p、¬q一真一假,∴(p)∨(q)为真命题,C错误;
对于D,“任意实数大于0”是命题,且为假命题,D错误.
故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
1)sin213°+cos217°﹣sin13°cos17°
2)sin215°+cos215°﹣sin15°cos15°
3)sin218°+cos212°﹣sin18°cos12°
4)sin2(﹣18°)+cos248°﹣sin2(﹣18°)cos48°
5)sin2(﹣25°)+cos255°﹣sin2(﹣25°)cos55°
(Ⅰ)试从上述五个式子中选择一个,求出这个常数;
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是等边三角形.

(1)证明:PB⊥CD;
(2)求二面角A﹣PD﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2xcos2x+sin22x﹣
(1)求函数f(x)的最小正周期及对称中心;
(2)在△ABC中,角B为钝角,角A,B,C的对边分别为a、b、c,f( )= ,且sinC= sinA,SABC=4,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+ )= a,曲线C2的参数方程为 (θ为参数).
(1)求C1的直角坐标方程;
(2)当C1与C2有两个公共点时,求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+ |﹣|x﹣ |;
(1)作出函数f(x)的图象;
(2)根据(1)所得图象,填写下面的表格:

性质

定义域

值域

单调性

奇偶性

零点

f(x)


(3)关于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6个不同的实数解,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若存在实数x1 , x2 , x3 , x4满足f(xl)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4 , 则x1x2x3x4的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax﹣ax+2,若g(2)=a,则f(2)=(
A.2
B.
C.
D.a2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在对人们休闲方式的一次调查中,其中主要休闲方式的选择有看电视和运动,现共调查了100人,已知在这100人中随机抽取1人,抽到主要休闲方式为看电视的人的概率为

(1)完成下列2×2列联表;

休闲方式为看电视

休闲方式为运动

合计

女性

40

男性

30

合计

(2)请判断是否可以在犯错误的概率不超过0.005的前提下认为性别与休闲方式有关系

参考公式

P(K2k)

0.25

0.15

0.10

0.025

0.010

0.005

k

1.323

2.072

2.706

5.024

6.635

7.879

查看答案和解析>>

同步练习册答案