精英家教网 > 高中数学 > 题目详情
设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入商场的3位顾客中至少有2位顾客既未购买甲种也未购买乙种商品的概率.
分析:(1)由题意知购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.设出事件,知事件之间是相互独立的和互斥的,根据概率公式得到结果.
(2)进入商场的3位顾客中至少有2位顾客既未选购甲种商品,也未选选购乙种商品包括进入商场的3位顾客中都未选购甲种商品,也未选购买乙种商品和进入商场的2位顾客未选购甲种商品,也未选购买乙种商品.根据事件之间的关系,得到结果.
解答:解:(Ⅰ)由题意知购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.
记A表示事件:进入商场的1位顾客购买甲种商品,
记B表示事件:进入商场的1位顾客购买乙种商品,
记C表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种,
A与B 是相互独立的,且A
.
B
.
A
B是互斥的,
∵C=A
.
B
+
.
A
B
P(C)=P(A•
.
B
+
.
A
•B)

=P(A•
.
B
)+P(
.
A
•B)
=P(A)•P(
.
B
)+P(A)•P(
.
B
)

=0.5×0.4+0.5×0.6=0.5
(Ⅱ)记A2表示事件:进入商场的3位顾客中都未选购甲种商品,也未选购买乙种商品;
D表示事件:进入商场的1位顾客未选购甲种商品,也未选购买乙种商品;
E表示事件:进入商场的3位顾客中至少有2位顾客既未选购甲种商品,也未选选购乙种商品;
.
D
=
.
A
.
B

∴P(
.
D
)=P(
.
A
)•P(
.
B

=0.5×0.4=0.2
P(A1)=C32×0.22×0.8=0.096
P(A2)=0.23=0.008
P(E)=P(A1+A2)=P(A1)+P(A2)=0.096+0.008=0.104
点评:此题重点考查相互独立事件有一个发生的概率,分清相互独立事件的概率求法,对于“至少”常从反面入手常可起到简化的作用;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(Ⅲ)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

16、设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,在进入该商场的1位顾客,既购买甲种商品也购买乙商品的概率为
0.3
(结果用小数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。

   (1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;

   (2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;

   (3)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望。

查看答案和解析>>

同步练习册答案