精英家教网 > 高中数学 > 题目详情
(本小题满分13分)
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=CC1,M为AB的中点。

(Ⅰ)求证:BC1∥平面MA1C;
(Ⅱ)求证:AC1⊥平面A1BC。
(Ⅰ)设AC1∩A1C=O,连结MO,四边形AA1C1C为矩形,AO=OC1AO=OC1,AM=MB,所以MO∥BC1所以∥平面MA1C(Ⅱ)矩形AA1C1C中,因为AC=CC1,所以AC1⊥A1C,直三棱柱ABC-A1B1C1,所以CC1⊥BC,因为AC⊥BC BC⊥平面ACC1A1所以BC⊥AC1所以AC1⊥平面A1BC

试题分析:(Ⅰ)如图,设AC1∩A1C=O,连结MO,

因为直三棱柱ABC-A1B1C1
所以四边形AA1C1C为矩形,
所以AO=OC1,
在△AC1B中,因为AO=OC1,AM=MB,
所以MO∥BC1.                      3分
又因为平面MA1C,MO平面MA1C,
所以∥平面MA1C。             6分
(Ⅱ)在矩形AA1C1C中,因为AC=CC1
所以AC1⊥A1C。                  8分
因为直三棱柱ABC-A1B1C1
所以CC1⊥BC,
又因为AC⊥BC,AC∩CC1=C,
所以BC⊥平面ACC1A1,        10分
所以BC⊥AC1。               11分
又因为BC∩A1C=C,AC1⊥A1C,
所以AC1⊥平面A1BC。      13分
点评:平面外一直线与平面内一直线平行,则直线平行于平面;一条直线垂直于平面内两条相交直线,则直线垂直于平面
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,正四棱锥的所有棱长相等,EPC的中点,则异面直线BEPA所成角的余弦值是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两不同直线,是两不同平面,则下列命题错误的是
A.若,,则
B.若,则
C.若
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)如图,在六面体中,.

求证:(1);(2).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知三棱柱ABC-A1B1C1,侧面BCC1B1丄底面ABC.

(I)若M、N分别是AB,A1C的中点,求证:MN//平面BCC1B1
(II)若三棱柱ABC-A1B1C1的各棱长均为2,侧棱BB1与底面 ABC所成的角为60°.问在线段A1C1上是否存在一点P,使得平面B1CP丄平面ACC1A1,若存在,求C1P与PA1的比值,若不存在,说明 理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,给出下列四个命题:
①若②若③若④若
其中正确的命题是(   )
A.①④B.②④C.①③④D.①②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

、b是两条不同的直线,是两个不同的平面,则下列四个命题中正确的是(    )
A.若⊥b,,则b∥B.若,则
C.若,则 D.若⊥b,,b⊥,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,底面是直角梯形,,∠,平面⊥平面.

(1)求证:⊥平面
(2)求平面和平面所成二面角(小于)的大小;
(3)在棱上是否存在点使得∥平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案