精英家教网 > 高中数学 > 题目详情

函数f(x)的定义域为R,且满足f(2)=2,f′(x)>1,则不等式f(x)-x>0的解集为________.

(2,+∞)

解析 令g(x)=f(x)-x

g′(x)=f′(x)-1.

由题意知g′(x)>0,∴g(x)为增函数.

g(2)=f(2)-2=0,

g(x)>0的解集为(2,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列说法:
(1)函数y=
-2x 3
与y=x
-2x
是同一函数

(2)f(x)=x+
2
x
,(x∈(0,1))的值域为(3,+∞)

(3)若函数f(x)的定义域为[0,2],则函数g(x)=
f(2x)
x-2
的定义域为[0,2)

(4)集合{x∈N|x=
6
a
,a∈N *}
中只有四个元素;其中正确的是
(2)(4)
(2)(4)
(只写番号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-1,2],则函数f(
x
)
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x+1)定义域是[-1,1],则函数f(x)的定义域是(    )

A.[-1,1]          B.R              C.[0,2]           D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=的定义域为R,则k的取值范围为___________.

查看答案和解析>>

科目:高中数学 来源:2010年宁夏高一上学期期中考试数学卷 题型:选择题

已知函数f(x)=的定义域是一切实数,则m的取值范围是(   )

A.0<m≤4        B.0≤m≤1         C.m≥4          D.0≤m≤4

 

查看答案和解析>>

同步练习册答案