精英家教网 > 高中数学 > 题目详情
14.已知sinα=$\frac{4}{5}$,且tanα<0,则cos(π+α)=(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

分析 由已知可求cosα<0,进而利用同角三角函数基本关系式,诱导公式即可计算得解.

解答 解:∵sinα=$\frac{4}{5}$>0,且tanα=$\frac{sinα}{cosα}$<0,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{3}{5}$,
∴cos(π+α)=-cosα=$\frac{3}{5}$.
故选:B.

点评 本题主要考查了同角三角函数基本关系式,诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图,在正方形ABCD中,AB=2,E为线段CD上一动点,现将△AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则点K所形成轨迹的长度为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知CD是圆x2+y2=25的动弦,且|CD|=8,则CD的中点M的轨迹方程是(  )
A.x2+y2=1B.x2+y2=16C.x2+y2=9D.x2+y2=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=xlnx的单调递减区间为(  )
A.$(0,\frac{1}{e})$B.$(-∞,\frac{1}{e})$C.(-∞,-e)D.$(\frac{1}{e},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线y2=2px的准线经过点(-1,1),
(Ⅰ)求抛物线的方程;
(Ⅱ)已知过抛物线焦点的直线交抛物线于A,B两点,且|AB|长为5,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足|$\overrightarrow{b}$|=4|$\overrightarrow{a}$|,且$\overrightarrow{a}$⊥(2$\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知对任意x∈R,不等式$\frac{1}{{2}^{{x}^{2}+2x}}$>($\frac{1}{2}$)${\;}^{2{x}^{2}+m+4}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求二面角B-PE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知x,y∈R,满足x2+2xy+4y2=6,则z=x+y的取值范围为$[-\sqrt{6},\sqrt{6}]$.

查看答案和解析>>

同步练习册答案