【题目】命题方程表示焦点在轴上的双曲线;命题若存在,使得成立.
(1)如果命题是真命题,求实数的取值范围;
(2)如果“”为假命题,“”为真命题,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,在直角坐标系中,圆与轴负半轴交于点,过点的直线,分别与圆交于,两点.
(Ⅰ)若,,求的面积;
(Ⅱ)若直线过点,证明:为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为圆的圆心, 是圆上的动点,点在圆的半径上,且有点和上的点,满足, .
(1)当点在圆上运动时,求点的轨迹方程;
(2)若斜率为的直线与圆相切,直线与(1)中所求点的轨迹交于不同的两点, , 是坐标原点,且时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆长轴的两个端点分别为,, 离心率.
(1)求椭圆的标准方程;
(2)作一条垂直于轴的直线,使之与椭圆在第一象限相交于点,在第四象限相交于点,若直线与直线相交于点,且直线的斜率大于,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线,.
(1)若直线,分别经过定点,,求定点,的坐标;
(2)是否存在一个定点,使得与的交点到定点的距离为定值?如果存在,求出定点的坐标及定值;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,和交于一点,除以外的其余各棱长均为2.
作平面与平面的交线,并写出作法及理由;
求证:平面平面;
若多面体的体积为2,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中学生综合素质评价某个维度的测评中,分优秀、合格、尚待改进三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:
表一:男生
男生 | 等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | 5 |
表二:女生
女生 | 等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | 3 |
(1)求,的值;
(2)从表一、二中所有尚待改进的学生中随机抽取3人进行交谈,记其中抽取的女生人数为,求随机变量的分布列及数学期望;
(3)由表中统计数据填写列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
男生 | 女生 | 总计 | |
优秀 | |||
非优秀 | |||
总计 | 45 |
参考公式:,其中.
参考数据:
0.01 | 0.05 | 0.01 | |
| 2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com