精英家教网 > 高中数学 > 题目详情
设函数,若a是从1,2,3三数中任取一个,b是从2,3,4,5四数中任取一个,那么f(x)>b恒成立的概率为( )
A.
B.
C.
D.
【答案】分析:先把f(x)的解析式变形,用分离常数法,然后用均值不等式求出最小值,本题是一个古典概型,试验发生包含的所有事件是12个,满足条件的事件是10个,列举出结果.
解答:解:x>1,a>0,f(x)=ax+=ax++1
=a(x-1)++1+a≥2+1+a=(+1)2
当且仅当x=+1>1时,取“=”,
∴f(x)min=(+1)2
于是f(x)>b恒成立就转化为(+1)2>b成立.
设事件A:“f(x)>b恒成立”,则
基本事件总数为12个,即
(1,2),(1,3),(1,4),(1,5);
(2,2),(2,3),(2,4),(2,5);
(3,2),(3,3),(3,4),(3,5);
事件A包含事件:(1,2),(1,3);
(2,2),(2,3),(2,4),(2,5);
(3,2),(3,3),(3,4),(3,5)共10个
由古典概型得P(A)==
故选D.
点评:在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数;当解析式中含有分式,且分子分母是齐次的,注意运用分离常数法来进行式子的变形,在使用均值不等式应注意一定,二正,三相等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

设函数数学公式,若a是从1,2,3三数中任取一个,b是从2,3,4,5四数中任取一个,那么f(x)>b恒成立的概率为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数数学公式,若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,
(1)求f(x)的最小值;
(2)求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年安徽省巢湖市庐江中学高一综合检测数学试卷(必修3)(解析版) 题型:解答题

设函数,若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,
(1)求f(x)的最小值;
(2)求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设函数,若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,(Ⅰ)求f(x)的最小值;(Ⅱ)求f(x)>b恒成立的概率.

查看答案和解析>>

同步练习册答案