【题目】若对圆(x﹣1)2+(y﹣1)2=1上任意一点P(x,y),|3x﹣4y+a|+|3x﹣4y﹣9|的取值与x,y无关,则实数a的取值范围是( )
A.a≤﹣4
B.﹣4≤a≤6
C.a≤﹣4或a≥6
D.a≥6
【答案】D
【解析】解:设z=|3x﹣4y+a|+|3x﹣4y﹣9|=5( + ),
故|3x﹣4y+a|+|3x﹣4y﹣9|可以看作点P到直线m:3x﹣4y+a=0与直线l:3x﹣4y﹣9=0距离之和的5倍,
∵取值与x,y无关,
∴这个距离之和与P无关,
如图所示:可知直线m平移时,P点与直线m,l的距离之和均为m,l的距离,即此时与x,y的值无关,
当直线m与圆相切时, =1,
化简得|a﹣1|=5,
解得a=6或a=﹣4(舍去),
∴a≥6
故选:D.
【考点精析】通过灵活运用二元一次不等式(组)所表示的平面区域和直线与圆的三种位置关系,掌握不等式组表示的平面区域是各个不等式所表示的平面区域的公共部;直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣ax(a>0),设 .
(1)判断函数h(x)=f(x)﹣g(x)零点的个数,并给出证明;
(2)首项为m的数列{an}满足:①an+1+an≠ ;②f(an+1)=g(an).其中0<m< .求证:对于任意的i,j∈N* , 均有ai﹣aj< ﹣m.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C: 过点P( ,1)且离心率为 ,F为椭圆的右焦点,过F的直线交椭圆C于M,N两点,定点A(﹣4,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若△AMN面积为3 ,求直线MN的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区﹣﹣龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自2015年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人. 某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)
年龄 | 频数 | 频率 | 男 | 女 |
[0,10) | 10 | 0.1 | 5 | 5 |
[10,20) | ① | ② | ③ | ④ |
[20,30) | 25 | 0.25 | 12 | 13 |
[30,40) | 20 | 0.2 | 10 | 10 |
[40,50) | 10 | 0.1 | 6 | 4 |
[50,60) | 10 | 0.1 | 3 | 7 |
[60,70) | 5 | 0.05 | 1 | 4 |
[70,80) | 3 | 0.03 | 1 | 2 |
[80,90) | 2 | 0.02 | 0 | 2 |
合计 | 100 | 1.00 | 45 | 55 |
(1)完成表格一中的空位①﹣④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.
(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?
50岁以上 | 50岁以下 | 合计 | |
男生 | |||
女生 | |||
合计 |
(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为ξ,求ξ的分布列 (表二)
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:k2= ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F分别为BC,PE的中点,AF⊥平面PED.
(1)求证:PA⊥平面ABCD
(2)求直线BF与平面AFD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】五面体ABC﹣DEF中,面BCFE是梯形,BC∥EF,面ABED⊥面BCFE,且AB⊥BE,DE⊥BE,AG⊥DE于G,若BE=BC=CF=2,EF=ED=4.
(1)求证:G是DE中点;
(2)求二面角A﹣CE﹣F的平面角的余弦.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com