精英家教网 > 高中数学 > 题目详情
7.计算:$\lim_{n→∞}\frac{2^n}{{{3^n}+1}}$=0.

分析 分子和分母同时除以3n,由此能求出结果.

解答 解:$\lim_{n→∞}\frac{2^n}{{{3^n}+1}}$=$\underset{lim}{n→∞}\frac{(\frac{2}{3})^{n}}{1+(\frac{1}{3})^{n}}$=0.
故答案为:0.

点评 本题考查极限的求法,是基础题,解题时要认真审题,注意极限性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.定义在区间(-1,1)上的函数f(x)满足:对任意的x,y∈(-1,1),都有f(x)+f(y)=f($\frac{x+y}{1+xy}$),且当x∈(-1,0),有f(x)>0.
(1)判断f(x)在区间(-1,1)上的奇偶性,并给出理由;
(2)判断f(x)在区间(-1,1)上的单调性,并给出证明;
(3)已知f($\frac{1}{2}$)=1,解不等式f(2x+1)+2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.曲线f(x)=$\frac{1}{3}$x3-2在点(-1,f(-1))处切线的斜率为(  )
A.$\sqrt{3}$B.1C.-1D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函f(x)数的导数f′(x)=3x2-3ax,f(0)=b,a,b为实数,1<a<2.若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,则a-b的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设$f(x)=\left\{\begin{array}{l}1(1≤x≤2)\\ \frac{1}{2}{x^2}-1\;(2<x≤3)\end{array}\right.$,对任意的实数a,记h(a)=max{f(x)-ax|x∈[1,3]}-min{f(x)-ax|x∈[1,3]}.
(1)h(0)=$\frac{5}{2}$.
(2)求h(a)的解析式及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.$\sqrt{3}x+y=0$的倾斜角的大小是120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.菱形ABCD中,E,F分别是AD,CD中点,若∠BAD=60°,AB=2,则$\overrightarrow{AF}$•$\overrightarrow{BE}$=(  )
A.$\frac{5}{2}$B.-$\frac{5}{2}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.0<a<1是函数f(x)=2ax2+1取值恒为正的(  )条件.
A.充分非必要B.必要非充分
C.充要D.既不充分又不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列关系中,正确的个数为(  )
①$\frac{{\sqrt{2}}}{2}∈R$
②0∈N*
③{-5}⊆Z
④∅={∅}.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案