精英家教网 > 高中数学 > 题目详情

【题目】已知圆M:(x﹣1)2+y2= ,椭圆C: +y2=1,若直线l与椭圆交于A,B两点,与圆M相切于点P,且P为AB的中点,则这样的直线l有(
A.2条
B.3条
C.4条
D.6条

【答案】C
【解析】解:当直线AB斜率不存在时且与圆M相切时,P在x轴上,

故满足条件的直线有两条;

当直线AB斜率存在时,设A(x1,y1),B(x2,y2),P(x0,y0),

+y12=1, +y22=1,

两式相减,整理得: =﹣

则kAB=﹣ ,kMP= ,kMPkAB=﹣1,

则kMPkAB=﹣ =﹣1,解得:x0=

,可得P在椭圆内部,

则这样的P点有两个,即直线AB斜率存在时,也有两条.

综上可得,所求直线l有4条.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数yf(x)在定义域[11]上既是奇函数,又是减函数.

(1)求证:对任意x1x2[11],有[f(x1)f(x2)]·(x1x2)0

(2)f(1a)f(1a2)0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b,c为三个不同的实数,记集合A= ,B= ,若集合A,B中元素个数都只有一个,则b+c=(
A.1
B.0
C.﹣1
D.﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的可导函数f(x)满足f(x)﹣f(﹣x)=2x3 , 当x∈(﹣∞,0]时f'(x)<3x2 , 实数a满足f(1﹣a)﹣f(a)≥﹣2a3+3a2﹣3a+1,则a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)满足f(2x)=x2﹣2ax+a2﹣1.
(Ⅰ)求f(x)的解析式,并写出f(x)的定义域;
(Ⅱ)若f(x)在 上的值域为[﹣1,0],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C: + =1(a>b>0)的左、右焦点分别为F1、F2 , 焦距为2,过点F2作直线l交椭圆于M、N两点,△F1MN的周长为8.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l分别交直线y= x,y=﹣ x于P,Q两点,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠ABC= ,边BC在平面α内,顶点A在平面α外,直线AB与平面α所成角为θ.若平面ABC与平面α所成的二面角为 ,则sinθ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图(1)中的1,3,6,10,由于这些数能够表示成三角形,所以将其称为三角形数;类似地,称图(2)中的1,4,9,16这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )

A. 289 B. 1 024

C. 1 225 D. 1 378

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋子里装有7个球,其中有红球4个,编号分别为1,2,3,4;白球3个,编号分别为2,3,4.从袋子中任取4个球(假设取到任何一个球的可能性相同).
(Ⅰ)求取出的4个球中,含有编号为3的球的概率;
(Ⅱ)在取出的4个球中,红球编号的最大值设为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

同步练习册答案