精英家教网 > 高中数学 > 题目详情

矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,

使点A在平面BCD上的射影A′落在BC上,求二面角A—BC-—C的大小。

  


解析:

这是一道由平面图形折叠成立体图形的问题,解决问题的关键在

于搞清折叠前后“变”与“不变”。结果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA、OE与BD的垂直关系不变。但OA与OE此时变成相交两线段并确定一平面,此平面必与棱垂直。由特征Ⅱ可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角。另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给下面的定量提供了优质服务。事实上,AO=AB·AD/BD=3*4/5=12/5,OA′=OE=BO·tgc∠CBD,而BO=AB2/BD=9/5, tg∠CBD,故OA′=27/20。在Rt△AA′O中,∠AA′O=90°所以cos∠AOA′=A′O/AO=9/16,ty∠AOA′=arccos9/16即所求的二面arccos9/16。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知矩形ABCD,AB=2,BC=1,沿对角线BD将△ABC折起,使二面角C-BD-A为直二面角,则异面直线BD与AC所成角的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(理)如图,矩形ABCD,|AB|=1,|BC|=a,PA⊥面ABCD且|PA|=1
(1)BC边上是否存在点Q,使得FQ⊥QD,并说明理由;
(2)若BC边上存在唯一的点Q使得FQ⊥QD,指出点Q的位置,并求出此时AD与平面PDQ所成的角的正弦值;
(3)在(2)的条件下,求二面角Q-PD-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江)已知矩形ABCD,AB=1,BC=
2
.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形ABCD中AB=4,BC=3,将其沿对角线AC折起,形成四面体ABCD,则以下命题正确的是:
①③④
①③④
(写出所有正确命题的序号)
①四面体ABCD体积最大值为
245

②四面体ABCD中,AB⊥CD;
③四面体ABCD的侧视图可能是个等腰直角三角形;
④四面体ABCD的外接球表面积是25π.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•永州一模)如图,在平面直角坐标系中,已知矩形ABCD,|AB|=4,|BC|=2,E、F、G、H分别是矩形四条边的中点,O是矩形ABCD的中心,
OR
OF
CT
CF
(0<λ<1)
,直线ER与直线GT的交点P的轨迹为W.
(1)求W的方程;
(2)求四边形OGPF面积的最大值.

查看答案和解析>>

同步练习册答案