精英家教网 > 高中数学 > 题目详情
某学校为了研究学情,从高三年级中抽取了20名学生三次测试的数学成绩和物理成绩,计算出了他们三次成绩的平均名次如下表:
学生序号12345678910
数    学1.312.325.736.750.367.749.052.040.034.3
物    理2.39.731.022.340.058.039.060.763.342.7
学生序号11121314151617181920
数    学78.350.065.766.368.095.090.787.7103.786.7
物    理49.746.783.359.750.0101.376.786.099.799.0
学校规定平均名次小于或等于40.0者为优秀,大于40.0者为不优秀.
(1)对名次优秀者赋分2,对名次不优秀者赋分1,从这20名学生中随机抽取2名,用ξ表示这两名学生数学科得分的和,求ξ的分布列和数学期望;
(2)根据这次抽查数据,是否在犯错误的概率不超过0.025的前提下认为物理成绩优秀与否和数学成绩优秀与否有关系?(下面的临界值表和公式可供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=,其中n=a+b+c+d)
【答案】分析:(1)根据条件ξ的取值为2,3,4,分别求出P(ξ=2),P(ξ=3),P(ξ=4).由此能求出ξ的分布列和数学期望Eξ.
(2)根据条件列出列联表,求出K2和P(K2≥5.024)=0.025,因此根据这次抽查数据在犯错误的概率不超过0.025的前提下,可以认为物理成绩优秀与否和数学成绩优秀与否有关系.
解答:解:(1)根据条件ξ的取值为2,3,4,
而且在20人中,数学成绩优秀的6人,不优秀的14人,所以有
P(ξ=2)==
P(ξ=3)==
P(ξ=4)==
所以ξ的分布列为
ξ234
P
(6分)
数学期望Eξ=2×+3×+4×=2.6.(8分)
(2)根据条件列出列联表如下:
物理优秀物理不优秀合计
数学优秀426
数学不优秀21214
合计61420
所以≈5.4875>5.024.
又P(K2≥5.024)=0.025,
因此根据这次抽查数据在犯错误的概率不超过0.025的前提下,
可以认为物理成绩优秀与否和数学成绩优秀与否有关系.(12分)
点评:本小题主要考查统计与概率的相关知识,具体涉及到随机变量的分布列、数学期望的求法和统计案例中独立性检验等知识内容.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•长春模拟)某学校为了研究学情,从高三年级中抽取了20名学生三次测试的数学成绩和物理成绩,计算出了他们三次成绩的平均名次如下表:
学生序号 1 2 3 4 5 6 7 8 9 10
数    学 1.3 12.3 25.7 36.7 50.3 67.7 49.0 52.0 40.0 34.3
物    理 2.3 9.7 31.0 22.3 40.0 58.0 39.0 60.7 63.3 42.7
学生序号 11 12 13 14 15 16 17 18 19 20
数    学 78.3 50.0 65.7 66.3 68.0 95.0 90.7 87.7 103.7 86.7
物    理 49.7 46.7 83.3 59.7 50.0 101.3 76.7 86.0 99.7 99.0
学校规定平均名次小于或等于40.0者为优秀,大于40.0者为不优秀.
(1)对名次优秀者赋分2,对名次不优秀者赋分1,从这20名学生中随机抽取2名,用ξ表示这两名学生数学科得分的和,求ξ的分布列和数学期望;
(2)根据这次抽查数据,是否在犯错误的概率不超过0.025的前提下认为物理成绩优秀与否和数学成绩优秀与否有关系?(下面的临界值表和公式可供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年吉林省长春市高三第四次调研数学试卷(理科)(解析版) 题型:解答题

某学校为了研究学情,从高三年级中抽取了20名学生三次测试的数学成绩和物理成绩,计算出了他们三次成绩的平均名次如下表:
学生序号12345678910
数    学1.312.325.736.750.367.749.052.040.034.3
物    理2.39.731.022.340.058.039.060.763.342.7
学生序号11121314151617181920
数    学78.350.065.766.368.095.090.787.7103.786.7
物    理49.746.783.359.750.0101.376.786.099.799.0
学校规定平均名次小于或等于40.0者为优秀,大于40.0者为不优秀.
(1)对名次优秀者赋分2,对名次不优秀者赋分1,从这20名学生中随机抽取2名,用ξ表示这两名学生数学科得分的和,求ξ的分布列和数学期望;
(2)根据这次抽查数据,是否在犯错误的概率不超过0.025的前提下认为物理成绩优秀与否和数学成绩优秀与否有关系?(下面的临界值表和公式可供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案