精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx满足f(x-1)=f(x)+x-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求函数f(x)的零点,并写出f(x)<0时,x取值的集合;
(Ⅲ)设F(x)=4f(ax)+3a2x-1(a>0且a≠1),当x∈[-1,1]时,F(x)有最大值14,试求a的值.
分析:(1)将f(x-1)=f(x)+x-1化简,再利用函数相等的意义求出a,b,得出f(x)的解析式;
(2)解f(x)=0,求出零点,依照二次不等式解法求解f(x)<0
(3)将ax看作整体u,换元得出关于u的二次函数,利用二次函数图象与性质求解.
解答:解:(Ⅰ)∵f(x)=ax2+bx满足f(x-1)=f(x)+x-1,∴a(x-1)2+b(x-1)=ax2+bx+x-1,即ax2-(2a-b)x+a-b=ax2+(b+1)x-1,∴
-(2a-b)=b+1
a-b=-1
,解得a=-
1
2
,b=
1
2
.∴f(x)=-
1
2
x2+
1
2
x
.…(5分)
( II)由f(x)=0得函数的零点为0,1.
又函数f(x)的图象是开口向下的抛物线,∴f(x)<0时x>1或x<0.
∴x取值的集合为{x|x>1或x<0}.…(9分)
( III)由F(x)=4f(ax)+3a2x-1(a>0且a≠1),得F(x)=a2x+2ax-1.
①当a>1时,令u=ax,∵x∈[-1,1],∴u∈[
1
a
,a]
,令g(u)=u2+2u-1=(u+1)2-2,u∈[
1
a
,a]
.∵对称轴u=-1,∴g(u)在[
1
a
,a]
上是增函数.∴gmax(u)=g(a)=a2+2a-1=14,∴a2+2a-15=0,∴a=3,a=-5(舍).
②当0<a<1时,令u=ax,∵x∈[-1,1]∴u∈[a,
1
a
]
∴g(u)=u2+2u-1=(u+1)2-2,u∈[a,
1
a
]
,∵对称轴u=-1,∴g(u)在[a,
1
a
]
上是增函数.∴gmax(u)=g(
1
a
)=(
1
a
)2+
2
a
-1=14
,∴
1
a
=3,
1
a
=-5
(舍),∴a=
1
3

综上a=
1
3
或a=3.…(14分)
点评:本题考查函数的解析式表示法,二次函数图象与性质,数形结合、换元的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案