精英家教网 > 高中数学 > 题目详情

【题目】如图,在下列四个几何体中,它们的三视图(主视图、左视图、俯视图)中有且仅有两个相同,而另一个不同的几何体是(

1)棱长为1的正方体

2)底面直径和高均为1的圆柱

3)底面直径和高均为1的圆锥

4)底面边长为1、高为2的正四棱柱

A.2)(3)(4B.1)(2)(3

C.1)(3)(4D.1)(2)(4

【答案】A

【解析】

主视图、左视图、俯视图中有且仅有两个相同,需要看出四个图形的三视图,圆柱的侧视图与主视图一样,圆锥的侧视图与主视图一样,四棱柱侧视图与主视图一样,得到结果.

解:要找三视图中有且仅有两个相同,而另一个不同的几何体,

需要看出所给的四个几何体的三视图,

正方体的三视图都是正方形,都相同,不合题意,

圆柱的侧视图与主视图一样,符合题意,

圆锥的侧视图与主视图一样,符合题意,

四棱柱侧视图与主视图一样,符合题意,

故符合题意的有(2)(3)(4)三个,

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】个不同的红球和个不同的白球,放入同一个袋中,现从中取出个球.

1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法;

2)取出一个红球记分,取出一个白球记分,若取出个球的总分不少于分,则有多少种不同的取法;

3)若将取出的个球放入一箱子中,记“从箱子中任意取出个球,然后放回箱子中”为一次操作,如果操作三次,求恰有一次取到个红球并且恰有一次取到个白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一半径为的水轮,水轮圆心距离水面2,已知水轮每分钟转动(按逆时针方向)3圈,当水轮上点从水中浮现时开始计时,即从图中点开始计算时间.

(1)当秒时点离水面的高度_________

(2)将点距离水面的高度(单位: )表示为时间(单位: )的函数,则此函数表达式为_______________ .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2)(本小题满分7分)选修4-4:坐标系与参数方程

在直接坐标系中,直线l的方程为x-y+4=0,曲线C的参数方程为.

I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4),判断点P与直线l的位置关系;

II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心为,直线l过点且与x轴不重合,l交圆两点,过点的平行线交于点.

1)证明为定值,并写出点的轨迹方程;

2)设点的轨迹为曲线,直线与曲线交于两点,点为椭圆上一点,若是以为底边的等腰三角形,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线.

(Ⅰ)是抛物线上不同于顶点的两点,若以为直径的圆经过抛物线的顶点,试证明直线必过定点,并求出该定点的坐标;

(Ⅱ)在(Ⅰ)的条件下,抛物线在处的切线相交于点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示不大于实数的最大整数,函数,若关于的方程有且只有5个解,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种类型的题目有5个选项,其中有3个正确选项,满分5分.赋分标准为“选对1个得2分,选对2个得4分,选对3个得5分,每选错1个扣3分,最低得分为0分”在某校的一次考试中出现了一道这种类型的题目,已知此题的正确答案为,假定考生作答的答案中的选项个数不超过3个.

(1)若甲同学无法判断所有选项,他决定在这5个选项中任选3个作为答案,求甲同学获得0分的概率;

(2)若乙同学只能判断选项是正确的,现在他有两种选择:一种是将AD作为答案,另一种是在这3个选项中任选一个与组成一个含有3个选项的答案,则乙同学的最佳选择是哪一种,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国明代珠算家程大位的名著《直指算法统宗》中有如下问题:“今有白米一百八十石,令三人从上及和减率分之,只云甲多丙米三十六石,问:各该若干?”其意思为:“今有白米一百八十石,甲、乙、丙三人来分,他们分得的白米数构成等差数列,只知道甲比丙多分三十六石,那么三人各分得多少白米?”请问:乙应该分得( )白米

A. 96石B. 78石C. 60石D. 42石

查看答案和解析>>

同步练习册答案