精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)当时,讨论的单调性;

(2)若在点处的切线方程为,若对任意的

恒有,求的取值范围(是自然对数的底数)。

【答案】(1) 当时, 上单调递增;当时, 上单调递增,在上单调递减;当时, 上单调递增,在上单调递减;(2)

【解析】试题分析

(1)求导数三种情况分别讨论导函数的符号,从而得到函数的单调情况。(2)根据导数的几何意义可得,从而。故由题意得对任意的恒成立 根据单调性可求得从而可得

试题解析

(1)当时,

所以

,解得

①当时, ,所以上单调递增;

②当时, ,列表得:

所以上单调递增,在上单调递减;

③当时, ,列表得:

所以上单调递增,在上单调递减。

综上可得,当时, 上单调递增;

时, 上单调递增,在上单调递减;

时, 上单调递增,在上单调递减。

(2)因为

所以

由题意得

整理得,解得

所以

因为对任意的恒成立,

所以对任意的恒成立

所以当时, 单调递减,

时, 单调递增。

因为

所以

所以

解得

所以实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中,平面,底面为菱形,且的中点.

1)证明:平面

2)若,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天干地支纪年法,源于中国,中国自古便有十天干与十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2016年为丙申年,那么到改革开放100年时,即2078年为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆的离心率为,过椭圆的左焦点,且斜率为的直线,与以右焦点为圆心,半径为的圆相切.

1)求椭圆的标准方程;

2)线段是椭圆过右焦点的弦,且,求的面积的最大值以及取最大值时实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,,二面角的大小为120°,点在棱上,且,点的重心.

1)证明:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)若数列{an}是的递增等差数列,其中的a3=5,且a1,a2,a5成等比数列,

(1)求{an}的通项公式;

(2)设bn= ,求数列{bn}的前项的和Tn

(3)是否存在自然数m,使得 <Tn对一切nN*恒成立?若存在,求出m的值;

若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的极大值为16,极小值为-16.

1)求的值;

2)若过点可作三条不同的直线与曲线相切,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,n为平面α外两条直线,其在平面α内的射影分别是两条直线m1和n1,给出下列4个命题:①m1∥n1m∥n;②m∥nm1与n1平行或重合;③m1⊥n1m⊥n;④m⊥nm1⊥n1.其中所有假命题的序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网购是现在比较流行的一种购物方式,现随机调查50名个人收入不同的消费者是否喜欢网购,调查结果表明:在喜欢网购的25人中有18人是低收入的人,另外7人是高收入的人,在不喜欢网购的25人中有6人是低收入的人,另外19人是高收入的人.

喜欢网购

不喜欢网购

总计

低收入的人

高收入的人

总计

(Ⅰ)试根据以上数据完成列联表,并用独立性检验的思想,指出有多大把握认为是否喜欢网购与个人收入高低有关系;

(Ⅱ)将5名喜欢网购的消费者编号为12345,将5名不喜欢网购的消费者编号也记作12345,从这两组人中各任选一人进行交流,求被选出的2人的编号之和为2的倍数的概率.

参考公式:

参考数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案