【题目】设,则的最小值为______.
【答案】
【解析】
设(其中,则),其几何意义为两点,的距离的平方,令,,
则,而是抛物线上的点到准线的距离,从而可以看作抛物线上的点到焦点距离和到上的点的距离的和,即的最小值是点到上的点的距离的最小值.
设(其中,则),其几何意义为两点,的距离的平方,令,,
由的导数为,,
点在曲线上,又,
令,,
则,而是抛物线上的点到准线的距离,即抛物线上的点到焦点的距离,
从而可以看作抛物线上的点到焦点距离和到上的点的距离的和,即,如图所示:
由两点之间线段最短,得的最小值是点到上的点的距离的最小值,由点到直线上垂线段最短,则就最小,即最小,
设,则,即,解得,即
点到的距离就是点到上的点的距离的最小值,
故的最小值为,即的最小值为.
故答案为:.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,射线l:(x≥0),曲线C1的参数方程为(为参数),曲线C2的方程为;以原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C3的极坐标方程为.
(1)写出射线l的极坐标方程以及曲线C1的普通方程;
(2)已知射线l与C2交于O,M,与C3交于O,N,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在矩形ABCD中,AB=3,BC=4,E,F分别在线段BC,AD上,EF∥AB,将矩形ABEF沿EF折起,记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.
(1)在线段BC是否存在一点E,使得ND⊥FC ,若存在,求出EC的长并证明;
若不存在,请说明理由.
(2)求四面体NEFD体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,为棱中点,底面是边长为2的正方形,为正三角形,平面与棱交于点,平面与平面交于直线,且平面平面.
(1)求证:;
(2)求四棱锥的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,在亚洲热带地区广泛栽培.槟榔是重要的中药材,在南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解,两个少数民族班学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周咀嚼槟榔的颗数作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).
(1)你能否估计哪个班级学生平均每周咀嚼槟榔的颗数较多?
(2)从班的样本数据中随机抽取一个不超过19的数据记为,从班的样本数据中随机抽取一个不超过21的数据记为,求的概率;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,在亚洲热带地区广泛栽培.槟榔是重要的中药材,在南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解,两个少数民族班学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周咀嚼槟榔的颗数作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).
(1)从班的样本数据中随机抽取一个不超过19的数据记为,从班的样本数据中随机抽取一个不超过21的数据记为,求的概率;
(2)从所有咀嚼槟榔颗数在20颗以上(包含20颗)的同学中随机抽取3人,求被抽到班同学人数的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com