精英家教网 > 高中数学 > 题目详情
16.求曲线y=log2x与曲线y=log2(4-x)以及x轴所围成的图形的面积.

分析 首先画出曲线围成的图象,利用指数函数与对数函数的对称性将面积利用指数函数的定积分解答.

解答 解:曲线y=log2x与曲线y=log2(4-x)以及x轴所围成的图形的如图
两个曲线的交点是(2,1),关于y=x对称的图形如图,所以面积为${∫}_{0}^{1}(4-{e}^{x}-{e}^{x})dx$=(4x-2ex)|${\;}_{0}^{1}$=4-2e+2=6-2e.

点评 本题考查了利用等积法求曲线围成的面积;解答本题的关键是将所求转化为指数函数的等积法计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.等差数列{an}中,a1=-3,11a5=5a8-13.
(1)求公差d;
(2)求前n项和Sn最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$2cos(2x+\frac{π}{6})$,(x∈R)给出下面四个命题,
①函数f(x)的最小正周期为2π
②函数f(x)的图象关于点$(\frac{π}{6},0)$对称
③函数f(x)的图象可由y=2cos2x的图象向左平移$\frac{π}{6}$个单位得到
④函数$f(x+\frac{π}{6})$是奇函数,
以上正确的命题是(  )
A.①②B.③④C.②④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.四棱锥P-ABCD中,△PAD为等边三角形,底面ABCD为等腰梯形,满足AB∥CD,AD=DC=$\frac{1}{2}$AB=2,且平面PAD⊥平面ABCD.
(Ⅰ)证明:BD⊥平面PAD;
(Ⅱ)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.直线y=3x-1与直线x+ay+2=0垂直,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=m(x-1)ex+x2(m∈R).
(1)若m=-1,求函数f(x)的单调区间;
(2)若对任意的x<0,不等式x2+(m+2)x>f′(x)恒成立,求m的取值范围;
(3)当m≤-1时,求函数f(x)在[m,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知曲线C的极坐标方程是ρ=2sinθ,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=2+3t}\end{array}\right.$(t为参数).
(1)写出直线l与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换$\left\{\begin{array}{l}{x′=2x}\\{y′=y}\end{array}\right.$得到曲线C′,再将曲线C′的图象向下平移一个单位,得到曲线C0.设曲线C0上任意一点M(x,y),求x+2$\sqrt{3}$y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=-3x2+a(6-a)x+b,若方程f(x)=0有一根小于1,另一根大于1,当b>-6且b为常数时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列各式的值:
(1)log3(27×92);
(2)lg0.00001.

查看答案和解析>>

同步练习册答案