精英家教网 > 高中数学 > 题目详情

【题目】正方形ABCD所在的平面与三角形CDE所在的平面交于CD,且AE⊥平面CDE.

(1)求证:AB∥平面CDE;
(2)求证:平面ABCD⊥平面ADE.

【答案】
(1)证明:正方形ABCD中,AB∥CD,

又AB平面CDE,

CD平面CDE,

所以AB∥平面CDE


(2)证明:因为AE⊥平面CDE,

且CD平面CDE,

所以AE⊥CD,

又正方形ABCD中,CD⊥AD

且AE∩AD=A,AE,AD平面ADE,

所以CD⊥平面ADE,

又CD平面ABCD,

所以平面ABCD⊥平面ADE


【解析】(1)根据正方形对边平行可得AB∥CD,结合线面平行的判定定理可得AB∥平面CDE;(2)由已知AE⊥平面CDE,可得AE⊥CD,结合正方形ABCD邻边垂直及线面垂直的判定定理可得CD⊥平面ADE,进而由面面垂直的判定定理可得平面ABCD⊥平面ADE.
【考点精析】掌握直线与平面平行的判定和平面与平面垂直的判定是解答本题的根本,需要知道平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;一个平面过另一个平面的垂线,则这两个平面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的一条对称轴为,且最高点的纵坐标是

(1)求的最小值及此时函数的最小正周期、初相;

(2)在(1)的情况下,设,求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥中, 互相垂直, 是线段上一动点,若直线与平面所成角的正切的最大值是,则三棱锥的外接球的表面积是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线经过点,倾斜角,圆的极坐标方程

(1)写出直线的参数方程,并把圆的方程化为直角坐标方程;

(2)设圆上的点到直线的距离最近,点到直线的距离最远,求点的横坐标之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,则函数 的定义域为(
A.[0,+∞)
B.[0,16]
C.[0,4]
D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程为:x2+y2=4
(1)求过点P(2,1)且与圆C相切的直线l的方程;
(2)直线l过点D(1,2),且与圆C交于A、B两点,若|AB|=2 ,求直线l的方程;
(3)圆C上有一动点M(x0 , y0), =(0,y0),若向量 = + ,求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数为偶函数且图象经过原点,其导函数的图象过点

(1)求函数的解析式;

(2)设函数,其中m为常数,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直角坐标平面内的两点P、Q满足条件:
①P、Q都在函数y=f(x)的图象上;
②P、Q关于原点对称,则称点对[P,Q]是函数y=f(x)的一对“友好点对”(点对[P,Q]与[Q,P]看作同一对“友好点对”),
已知函数f(x)= ,则此函数的“友好点对”有(
A.0对
B.1对
C.2对
D.3对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为2,4,4.现从这10人中随机选出2人作为该组代表参加座谈会.
(I)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;
( II)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.

查看答案和解析>>

同步练习册答案