精英家教网 > 高中数学 > 题目详情
设数列{an}为前n项和为Sn,a1=2,数列{ Sn+2}是以2为公比的等比数列.
(1)求an
(2)抽去数列{an}中的第1项,第4项,第7项,…,第3n-2项,余下的项顺序不变,组成一个新数列{cn},若{cn}的前n项和为Tn,求证:
【答案】分析:(1)由数列{ Sn+2}是以4为首项,2为公比的等比数列可得Sn=2n+1-2,进而可求通项;
(2)新数列{cn}为22,23,25,26,28,29,它的奇数项组成以4为首项、公比为8的等比数列;偶数项组成以8为首项、公比为8的等比数列.由此入手能证明:
解答:解:(1)由题意得:S1=a1=2,S1+2=4,(1分)
已知数列{ Sn+2}是以4为首项,2为公比的等比数列
所以有:Sn+2=2n+1,Sn=2n+1-2    (4分)
当n≥2时,an=Sn-Sn-1=2n,又a1=2(6分)
所以:an=2n(n∈N,n≥1)(7分)
(2)由(1)知:an=2n(n∈N,n≥1),
∴数列{cn}为22,23,25,26,28,29,…,它的奇数项组成以4为首项,公比为8的等比数列;偶数项组成以8为首项、公比为8的等比数列;(8分)
∴当 n=2k-1(k∈N*)时,
Tn=(c1+c3+…+c2k-1)+(c2+c4+…+c2k-2
=(22+25+…+23k-1)+( 23+26+…+23k-3
=+=×8k-,(11分)
Tn+1=Tn+cn+1=×8k-+23k=×8k-,(10分)
==+
∵5×8k-12≥28,∴≤3.(11分)
∴当n=2k (k∈N*)时,
Tn=(c1+c3+…+c2k-1)+(c2+c4+…+c2k
=(22+25+…+23k-1)+( 23+26+…+23k
=+=×8k-,(12分)
Tn+1=Tn+cn+1=×8k-+23k+2=×8k-,(13分)
==+,∵8k-1≥7,∴
.(14分)
点评:本题考查数列的性质和综合运用,解题时要认真审题,仔细解答,注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}为前n项和为Sn,a1=2,数列{ Sn+2}是以2为公比的等比数列.
(1)求an
(2)抽去数列{an}中的第1项,第4项,第7项,…,第3n-2项,余下的项顺序不变,组成一个新数列{cn},若{cn}的前n项和为Tn,求证:
12
5
Tn+1
Tn
11
3

查看答案和解析>>

科目:高中数学 来源:2011届广东省珠海市高三5月综合测试(二)理科数学试题 题型:解答题

设数列{an}为前n项和为Sn,,数列{ Sn +2}是以2为公比的等比数列.
(1)求
(2)抽去数列{an}中的第1项,第4项,第7项,……,第3n-2项,余下的项顺序不变,组成一个新数列{cn},若{cn}的前n项和为Tn,求证:
<≤

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省珠海市高三5月综合测试(二)理科数学试题 题型:解答题

设数列{an}为前n项和为Sn,,数列{ Sn +2}是以2为公比的等比数列.

(1)求

(2)抽去数列{an}中的第1项,第4项,第7项,……,第3n-2项,余下的项顺序不变,组成一个新数列{cn},若{cn}的前n项和为Tn,求证:

<≤

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)

设数列{an}为前n项和为Sn,,数列{ Sn +2}是以2为公比的等比数列.

(1)求

(2)抽去数列{an}中的第1项,第4项,第7项,……,第3n-2项,余下的项顺序不变,组成一个新数列{cn},若{cn}的前n项和为Tn,求证:

<≤

查看答案和解析>>

同步练习册答案