精英家教网 > 高中数学 > 题目详情
已知椭圆E:
x2
a2
+
y2
3
=1
(a
3
)的离心率e=
1
2
.直线x=t(t>0)与曲线 E交于不同的两点M,N,以线段MN 为直径作圆 C,圆心为 C.
(1)求椭圆E的方程;
(2)若圆C与y轴相交于不同的两点A,B,求△ABC的面积的最大值.
(1)∵椭圆E:
x2
a2
+
y2
3
=1
(a
3
)的离心率e=
1
2

a2-3
a
=
1
2
,解得a=2.
∴椭圆E的方程为
x2
4
+
y2
3
=1

(2)依题意,圆心C(t,0)(0<t<2).
x=t
x2
4
+
y2
3
=1
,得y2=
12-3t2
4

∴圆C的半径为r=
12-3t2
2

∵圆C与y轴相交于不同的两点A,B,且圆心C到y轴的距离d=t,
∴0<t<
12-3t2
2
,即0<t<
2
21
7

∴弦长|AB|=2
r2-d2
=2
12-3t2
4
-t2
=
12-7t2

∴△ABC的面积S=
1
2
•t•
12-7t2
=
1
2
7
×(
7
t)•
12-7t2

1
2
7
×
(
7
t)2+12t-7t2
2
=
3
7
7

当且仅当
7
t=
12-7t2
,即t=
42
7
时等号成立.
所以△ABC的面积的最大值为
3
7
7
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知双曲线中心在原点,一个顶点的坐标为,且焦距与虚轴长之比为,则双曲线的标准方程是____________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆上任意一点到两焦点距离之和为4,直线为该椭圆的一条准线.
1)求椭圆C的方程;
2)设直线与椭圆C交于不同的两点(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,有一正方形钢板ABCD缺损一角(图中的阴影部分),边缘线OC是以直线AD为对称轴,以线段AD的中点O为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.若正方形的边长为2米,问如何画切割线EF,可使剩余的直角梯形的面积最大?并求其最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点(1,1)是椭圆
x2
4
+
y2
2
=1
某条弦的中点,则此弦所在的直线方程为:______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的左、右焦点分别是F1、F2,离心率为
3
2
,过F1且垂直于x轴的直线被椭圆C截得的线段长为1;
(Ⅰ)求椭圆C的方程.
(Ⅱ)若A,B,C是椭圆上的三个点,O是坐标原点,当点B是椭圆C的右顶点,且四边形OABC为菱形时,求此菱形的面积.
(Ⅲ)设点p是椭圆C上除长轴端点外的任一点,连接PF1、PF2,设∠F1PF2的角平分线PM交椭圆C的长轴于点M(m,0),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知B(-1,1)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上一点,且点B到椭圆的两个焦点距离之和为4;
(1)求椭圆方程;
(2)设A为椭圆的左顶点,直线AB交y轴于点C,过C作斜率为k的直线l交椭圆于D,E两点,若
S△CBD
S△CAE
=
1
6
,求实数k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点B(0,1),A,C为椭圆C:
x2
a2
+y2
=1(a>1)上的两点,△ABC是以B为直角顶点的直角三角形.
(1)△ABC能否为等腰三角形?若能,这样的三角形有几个?
(2)当a=2时,求线段AC的中垂线l在x轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点与椭圆的右焦点重合,则的值为( )
A.B.2 C.D.4

查看答案和解析>>

同步练习册答案